A Boolean gene regulatory model of heterosis and speciation

2015 
Background Modelling genetic phenomena affecting biological traits is important for the development of agriculture as it allows breeders to predict the potential of breeding for certain traits. One such phenomenon is heterosis or hybrid vigor: crossing individuals from genetically distinct populations often results in improvements in quantitative traits, such as growth rate, biomass production and stress resistance. Heterosis has become a very useful tool in global agriculture, but its genetic basis remains controversial and its effects hard to predict. We have taken a computational approach to studying heterosis, developing a simulation of evolution, independent reassortment of alleles and hybridization of Gene Regulatory Networks (GRNs) in a Boolean framework. These artificial regulatory networks exhibit topological properties that reflect those observed in biology, and fitness is measured as the ability of a network to respond to external inputs in a pre-defined way.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    8
    Citations
    NaN
    KQI
    []