language-icon Old Web
English
Sign In

Heterosis

Heterosis, hybrid vigor, or outbreeding enhancement, is the improved or increased function of any biological quality in a hybrid offspring. An offspring is heterotic if its traits are enhanced as a result of mixing the genetic contributions of its parents. These effects can be due to Mendelian or non-Mendelian inheritance.The physiological vigor of an organism as manifested in its rapidity of growth, its height and general robustness, is positively correlated with the degree of dissimilarity in the gametes by whose union the organism was formed … The more numerous the differences between the uniting gametes — at least within certain limits — the greater on the whole is the amount of stimulation … These differences need not be Mendelian in their inheritance … To avoid the implication that all the genotypic differences which stimulate cell-division, growth and other physiological activities of an organism are Mendelian in their inheritance and also to gain brevity of expression I suggest … that the word 'heterosis' be adopted.'The current view ... is that the dominance hypothesis is the major explanation of inbreeding decline and the high yield of hybrids. There is little statistical evidence for contributions from overdominance and epistasis. But whether the best hybrids are getting an extra boost from overdominance or favorable epistatic contributions remains an open question.' Heterosis, hybrid vigor, or outbreeding enhancement, is the improved or increased function of any biological quality in a hybrid offspring. An offspring is heterotic if its traits are enhanced as a result of mixing the genetic contributions of its parents. These effects can be due to Mendelian or non-Mendelian inheritance. In proposing the term heterosis to replace the older term heterozygosis, G.H. Shull aimed to avoid limiting the term to the effects that can be explained by heterozygosity in Mendelian inheritance. Heterosis is often discussed as the opposite of inbreeding depression although differences in these two concepts can be seen in evolutionary considerations such as the role of genetic variation or the effects of genetic drift in small populations on these concepts. Inbreeding depression occurs when related parents have children with traits that negatively influence their fitness largely due to homozygosity. In such instances, outcrossing should result in heterosis. Not all outcrosses result in heterosis. For example, when a hybrid inherits traits from its parents that are not fully compatible, fitness can be reduced. This is a form of outbreeding depression. Dominance versus overdominance is a scientific controversy in the field of genetics that has persisted for more than a century. These two alternative hypotheses were first stated in 1908. When a population is small or inbred, it tends to lose genetic diversity. Inbreeding depression is the loss of fitness due to loss of genetic diversity. Inbred strains tend to be homozygous for recessive alleles that are mildly harmful (or produce a trait that is undesirable from the standpoint of the breeder). Heterosis or hybrid vigor, on the other hand, is the tendency of outbred strains to exceed both inbred parents in fitness. Selective breeding of plants and animals, including hybridization, began long before there was an understanding of underlying scientific principles. In the early 20th century, after Mendel's laws came to be understood and accepted, geneticists undertook to explain the superior vigor of many plant hybrids. Two competing hypotheses, which are not mutually exclusive, were developed: Dominance and overdominance have different consequences for the gene expression profile of the individuals. If overdominance is the main cause for the fitness advantages of heterosis, then there should be an over-expression of certain genes in the heterozygous offspring compared to the homozygous parents. On the other hand, if dominance is the cause, fewer genes should be under-expressed in the heterozygous offspring compared to the parents. Furthermore, for any given gene, the expression should be comparable to the one observed in the fitter of the two parents. Population geneticist James Crow (1916-2012) believed, in his younger days, that overdominance was a major contributor to hybrid vigor. In 1998 he published a retrospective review of the developing science. According to Crow, the demonstration of several cases of heterozygote advantage in Drosophila and other organisms first caused great enthusiasm for the overdominance theory among scientists studying plant hybridization. But overdominance implies that yields on an inbred strain should decrease as inbred strains are selected for the performance of their hybrid crosses, as the proportion of harmful recessives in the inbred population rises. Over the years, experimentation in plant genetics has proven that the reverse occurs, that yields increase in both the inbred strains and the hybrids, suggesting that dominance alone may be adequate to explain the superior yield of hybrids. Only a few conclusive cases of overdominance have been reported in all of genetics. Since the 1980s, as experimental evidence has mounted, the dominance theory has made a comeback.

[ "Hybrid", "Overdominance", "Midparent", "Mating design", "Cajanus cajanifolius" ]
Parent Topic
Child Topic
    No Parent Topic