The impact of substrate bias on a remote plasma sputter coating process for conformal coverage of trenches and 3D structures

2015 
With the progression towards higher aspect ratios and finer topographical dimensions in many micro- and nano-systems, it is of technological importance to be able to conformally deposit thin films onto such structures. Sputtering techniques have been developed to provide such conformal coverage through a combination of coating re-sputtering and ionised physical vapour deposition (IPVD), the latter by use of a secondary plasma source or a pulsed high target power (HiPIMS). This paper reports on the use of an alternate remote plasma sputtering technique in which a high density (>1013 cm−3) magnetised plasma is used for sputter deposition, and additionally is shown to provide IPVD and a re-sputtering capability. From the substrate I–V characteristics and optical emission spectroscopy (OES) data, it is shown that remote plasma sputtering is an inherently continuous IPVD process (without the need of a secondary discharge). Through the reactive deposition of Al2O3 onto complex structures, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) results demonstrate that applying a negative substrate bias during film growth can result in re-sputtering of deposited material and film growth on surfaces obscured from the initial sputter flux. Using 5 : 1 (height : width) aspect ratio trenches, the substrate bias was set to 0,−245 and −334 V. At 0 V substrate bias, the alumina coating is predominantly deposited on the horizontal surfaces; at −344 V, it is predominantly deposited onto the side walls and at −245 V a more uniform layer thickness is obtained over the trench. The process was optimised further by alternating the substrate bias between −222 and −267 V, with a 50% residence time at each voltage, yielding a more uniform conformal coverage of the 5 : 1 aspect ratio structures over large areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    13
    Citations
    NaN
    KQI
    []