is ranked among the top five bacterial pathogens responsible for catheter-associated urinary tract infections, wound infections, secondary root canal infections, and infective endocarditis. Previously, we showed that inactivation of either the manganese- and iron-binding (EfaA) or zinc-binding (AdcA and AdcAII) lipoproteins significantly reduced
Abstract Influenza A infection causes annual substantial morbidity and mortality worldwide. Current vaccines, are administered either unadjuvanted or adjuvanted with aluminum hydroxide (alum). Efficacy is highly dependent on close matching of the hemagglutinin and neuraminidase surface proteins of the vaccine with currently circulating virus. The optimal adjuvant for influenza would elicit a robust, durable antibody response and provide protection against strains of drifted or heterosubtypic strains of influenza. An adjuvant consisting of cationic lipid DNA complexes (JVRS-100) has been evaluated with whole inactivated influenza in mice. Heat-inactivated HKx31 (H3N2) or PR/8/34 (H1N1) influenza virus (5µg) with or without the JVRS-100 adjuvant (20µg) alone was administered intramuscularly at week 0 and 2. At three months post the final injection animals were either terminated for immunogenicity tests or challenged intranasally with live HKx31 (1xMLD50). Vaccination with JVRS-100 resulted in a significant increase in hemagglutination inhibiting (HAI) antibodies and an IgG2a isotype switch compared to virus alone. Furthermore, the animals vaccinated with the heterosuptypic strain plus adjuvant had decreased morbidity and mortality compared to the non-adjuvanted group. The results suggest that the JVRS-100 adjuvant increases the magnitude, durability and quality of the immune response, making it an attractive candidate for adjuvanting influenza vaccines.
Abstract Introduction Periodontal diseases ( PD ) are complex oral inflammatory diseases initiated by keystone bacteria such as Porphyromonas gingivalis . A vaccine for PD is desirable as clinical treatment involves protracted maintenance strategies aimed to retain dentition. Although prior immunization approaches targeting P. gingivalis have reported variable success in limiting facets of disease such as oral bone loss, it remains that a vaccine for this disease may be attainable. Aim To investigate cell‐free protein synthesis ( CFPS ) as a platform to produce vaccinable targets suitable for efficacy testing in a P. gingivalis ‐induced murine oral bone loss model. Materials and Methods Recombinantly generated P. gingivalis minor fimbriae protein (Mfa1), RgpA gingipain hemagglutinin domain 1 ( HA 1), and RgpA gingipain hemagglutinin domain 2 ( HA 2) were combined in equivalent doses in adjuvants and injected intramuscularly to immunize mice. Serum levels of protein‐specific antibody were measured by ELISA , and oral bone levels were defined by morphometrics. Results Recombinantly generated P. gingivalis proteins possessed high fidelity to predicted size and elicited protein‐specific IgG following immunization. Importantly, immunization with the vaccine cocktail protected from P. gingivalis elicited oral bone loss. Conclusion These data verify the utility of the CFPS technology to synthesize proteins that have the capacity to serve as novel vaccines.
Approximately 250 million people worldwide are chronically infected with hepatitis B virus (HBV) and more than half of the hepatocellular carcinoma (HCC) cases are attributed to this infection. As HCC has a high mortality rate, and current treatment options are remarkably limited, the development of new therapeutic treatment strategies is warranted. In this study, woodchucks infected with woodchuck hepatitis virus (WHV), and with pre-existing liver tumors, were used as a model to investigate if complexes of cationic liposomes and non-coding DNA (JVRS-100) were effective in treatment of HCC. It was observed that the high serum viral load that is present in a typical chronic WHV infection (i.e., approximately 100-fold higher than human viral loads) results in immune suppression and resistance to treatment with JVRS-100. Treatment of woodchucks with lower serum viral load that more closely matched with the viral load usually seen in human HBV infection appears a better model for immunotherapeutic development based on the responsiveness to JVRS-100 treatment. In the latter case, marked declines in WHV DNA and WHV surface antigen were determined over the 12-week treatment period and WHV markers stayed suppressed during most time points of the 12-week follow-up period. Even more remarkably, the formation of new liver tumors was not observed in woodchucks treated with a well-tolerated dose of JVRS-100, as compared to several new tumors that developed in vehicle-treated control animals. Although there was little decrease in the volumes of the liver tumors existing at the time of treatment, it is generally accepted that preventing the spread and metastasis of almost always fatal cancers such as HCC and thus, reducing it to a chronic and treatable disease can also be a successful therapeutic approach. The results in woodchucks warrant the investigation of JVRS-100 as an intervention to prevent liver cancer in patients chronically infected with HBV and at high risk for HCC development.
ABSTRACT Influenza A virus is a negative-strand segmented RNA virus in which antigenically distinct viral subtypes are defined by the hemagglutinin (HA) and neuraminidase (NA) major viral surface proteins. An ideal inactivated vaccine for influenza A virus would induce not only highly robust strain-specific humoral and T-cell immune responses but also cross-protective immunity in which an immune response to antigens from a particular viral subtype (e.g., H3N2) would protect against other viral subtypes (e.g., H1N1). Cross-protective immunity would help limit outbreaks from newly emerging antigenically novel strains. Here, we show in mice that the addition of cationic lipid/noncoding DNA complexes (CLDC) as adjuvant to whole inactivated influenza A virus vaccine induces significantly more robust adaptive immune responses both in quantity and quality than aluminum hydroxide (alum), which is currently the most widely used adjuvant in clinical human vaccination. CLDC-adjuvanted vaccine induced higher total influenza virus-specific IgG, particularly for the IgG2a/c subclass. Higher levels of multicytokine-producing influenza virus-specific CD4 and CD8 T cells were induced by CLDC-adjuvanted vaccine than with alum-adjuvanted vaccine. Importantly, CLDC-adjuvanted vaccine provided significant cross-protection from either a sublethal or lethal influenza A viral challenge with a different subtype than that used for vaccination. This superior cross-protection afforded by the CLDC adjuvant required CD8 T-cell recognition of viral peptides presented by classical major histocompatibility complex class I proteins. Together, these results suggest that CLDC has particular promise for vaccine strategies in which T cells play an important role and may offer new opportunities for more effective control of human influenza epidemics and pandemics by inactivated influenza virus vaccine.