Bodonids and trypanosomatids are derived from a common ancestor with the bodonids being a more primitive lineage. The Neobodonida, one of the three clades of bodonids, can be free-living, commensal or parasitic. Despite the ecological and evolutionary significance of these organisms, however, many of their biological and pathological features are currently unknown. Here, we employed metatranscriptomics using RNA-seq technology combined with field-emission microscopy to reveal the virulence factors of a recently described genus of Neobodonida that is considered to be responsible for ascidian soft tunic syndrome (AsSTS), but whose pathogenesis is unclear. Our microscopic observation of infected tunic tissues suggested putative virulence factors, enabling us to extract novel candidate transcripts; these included cysteine proteases of the families C1 and C2, serine proteases of S51 and S9 families, and metalloproteases grouped into families M1, M3, M8, M14, M16, M17, M24, M41, and M49. Protease activity/inhibition assays and the estimation of expression levels within gene clusters allowed us to identify metalloprotease-like enzymes as potential virulence attributes for AsSTS. Furthermore, a multimarker-based phylogenetic analysis using 1,184 concatenated amino acid sequences clarified the order Neobodo sp. In sum, we herein used metatranscriptomics to elucidate the in situ expression profiles of uncharacterized putative transcripts of Neobodo sp., combined these results with microscopic observation to select candidate genes relevant to pathogenesis, and used empirical screening to define important virulence factors.
The emergence of antimicrobial-resistant Staphylococcus aureus has become a grave concern worldwide. In this study, 95 strains of S. aureus isolated from stool samples were collected from Busan, South Korea to characterize their antimicrobial susceptibility, enterotoxin genes, and molecular typing using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and random amplification of polymorphic DNA (RAPD) assay. Only two strains showed no drug resistance, whereas resistance to three or more antibiotics was observed in 87.4% of strains. Ampicillin resistance was the most common at 90% and all strains were susceptible to vancomycin. The distribution of enterotoxin genes encoded in isolates was sea (32.6%), sec (11.6%), seg (19%), sea & sec (2.1%), and sec & seg (34.7%). Molecular typing using both MALDI-TOF MS and RAPD indicated that S. aureus exhibited diverse clonal lineages and no correlations were observed among the profiling of enterotoxin, MALDI-TOF MS, and RAPD. This investigation provides useful information on foodborne pathogenic S. aureus that has a significant public health impact in South Korea.
Vibrio parahaemolyticus causes severe gastroenteritis in humans after consuming contaminated raw or undercooked seafood. A species-specific marker, the thermolabile hemolysin (tlh) gene, and two pathogenic markers, thermostable-related hemolysin (trh) and thermostable-direct hemolysin (tdh) genes, have been used to identify V. parahaemolyticus and determine its pathogenicity using both PCR and qPCR assays. To enable testing in field conditions with limited resources, this study aimed to develop a simple and rapid method to detect the species-specific (tlh) and pathogenic (trh and tdh) genes of V. parahaemolyticus using multienzyme isothermal rapid amplification (MIRA) combined with a lateral-flow dipstick (LFD). The amplification of the tlh, trh, and tdh genes could be completed within 20 min at temperatures ranging from 30 to 45 °C (p < 0.05). The test yielded positive results for V. parahaemolyticus but produced negative results for nine Vibrio species and eighteen foodborne pathogenic bacterial species. MIRA-LFD could detect 10 fg of DNA and 2 colony-forming units (CFU) of V. parahaemolyticus per reaction, demonstrating a sensitivity level comparable to that of qPCR, which can detect 10 fg of DNA and 2 CFU per reaction. Both MIRA-LFD and qPCR detected seven tlh-positive results from thirty-six oyster samples, whereas one positive result was obtained using the PCR assay. No positive results for the trh and tdh genes were obtained from any oyster samples using MIRA-LFD, PCR, and qPCR. This study suggests that MIRA-LFD is a simple and rapid method to detect species-specific and pathogenic genes of V. parahaemolyticus with high sensitivity.
The purpose of this study is to investigate the psychological states of optimal and safe driving condition by measuring various physiological signals such as EEG, EOG, ECG, GSR and SKT while driving in long tunnels. During driving through long tunnels on express highways, some problems may occur. So Experiments are conducted in Juk-Ryoung tunnels that are located in Korea and Kanetzu tunnels in Japan. We investigated some problems generally occurred from corner segment from Juk-Ryoung tunnels and the effects of delineation systems from Kanetzu tunnels along with tendency to sleepiness in long time driving. As a result of this study a driving simulator is used to simulate driving inside a tunnel and changes in physiological signals are recorded.
A multiplex PCR protocol was established to simultaneously detect major bacterial pathogens in olive flounder (Paralichthys olivaceus) including Edwardsiella (E.) tarda, Streptococcus (S.) parauberis, and S. iniae.The PCR assay was able to detect 0.01 ng of E. tarda, 0.1 ng of S. parauberis, and 1 ng of S. iniae genomic DNA.Furthermore, this technique was found to have high specificity when tested with related bacterial species.This method represents a cheaper, faster, and reliable alternative for identifying major bacterial pathogens in olive flounder, the most important farmed fish in Korea.
Abstract Extracellular vesicles (EVs) containing specific cargo molecules from the cell of origin are naturally secreted from bacteria. EVs play significant roles in protecting the bacterium, which can contribute to their survival in the presence of antibiotics. Herein, we isolated EVs from methicillin-resistant Staphylococcus aureus (MRSA) in an environment with or without stressor by adding ampicillin at a lower concentration than the minimum inhibitory concentration (MIC). We investigated whether EVs from MRSA under stress condition or normal condition could defend susceptible bacteria in the presence of several β-lactam antibiotics, and directly degrade the antibiotics. A comparative proteomic approach was carried out in both types of EVs to investigate β-lactam resistant determinants. The secretion of EVs from MRSA under antibiotic stressed conditions was increased by 22.4-fold compared with that of EVs without stress. Proteins related to the degradation of β-lactam antibiotics were abundant in EVs released from the stressed condition. Taken together, the present data reveal that EVs from MRSA play a crucial role in the survival of β-lactam susceptible bacteria by acting as the first line of defense against β-lactam antibiotics, and antibiotic stress leads to release EVs with high defense activity.