To date, information retrieval methods in the medical field have mainly focused on English medical reports, but little work has studied Chinese electronic medical reports, especially in the field of obstetrics and gynecology. In this paper, a dataset of 180,000 complete Chinese ultrasound reports in obstetrics and gynecology was established and made publicly available. Based on the ultrasound reports in the dataset, a new information retrieval method (IKAR) is proposed to extract key information from the ultrasound reports and automatically generate the corresponding ultrasound diagnostic results. The model can both extract what is already in the report and analyze what is not in the report by inference. After applying the IKAR method to the dataset, it is proved that the method could achieve 89.38% accuracy, 91.09% recall, and 90.23% F-score. Moreover, the method achieves an F-score of over 90% on 50% of the 10 components of the report. This study provides a quality dataset for the field of electronic medical records and offers a reference for information retrieval methods in the field of obstetrics and gynecology or in other fields.
Obesity is a chronic metabolic disease that can be induced by a high-fat diet (HFD) and predisposes to a variety of complications. In recent years, various bioactive substances, such as probiotics, prebiotics, and postbiotics, have been widely discussed because of their good anti-lipid and anti-inflammatory activities. In this paper, soybean protein isolate was used as a substrate to prepare the postbiotic. Compound prebiotics (galactose oligosaccharides, fructose oligosaccharides, and lactitol) preparation Aunulife Postbiotics and Prebiotics Composition (AYS) is the research object. Weight loss and bowel movements in mice induced by a high-fat diet were studied. Moreover, qualitative and quantitative analyses of small-molecule metabolites in AYS were performed to identify the functional molecules in AYS. After 12 weeks of feeding, the weight gain of mice that were fed with high-dose AYS (group H) and low-dose AYS (group L) from 4 to 12 weeks was 6.72 g and 5.25 g (p < 0.05), both of which were significantly lower than that of the high-fat diet (group DM, control group) group (7.73 g) (p < 0.05). Serum biochemical analysis showed that TC, TG, and LDL-C levels were significantly lower in mice from the H and L groups (p < 0.05). In addition, the fecal lipid content of mice in the L group reached 5.89%, which was significantly higher than that of the DM group at 4.02% (p < 0.05). The study showed that AYS changed the structure of the intestinal microbiota in mice on a high-fat diet, resulting in a decrease in the relative abundance of Firmicutes and Muribaculaceae and an increase in the relative abundance of Bacteroidetes, Verrucomicrobia, and Lactobacillus. The metabolomics study results of AYS showed that carboxylic acids and derivatives, and organonitrogen compounds accounted for 51.51% of the AYS metabolites, among which pantothenate, stachyose, betaine, and citrate had the effect of preventing obesity in mice. In conclusion, the administration of prebiotics and postbiotic-rich AYS reduces weight gain and increases fecal lipid defecation in obese mice, potentially by regulating the intestinal microbiota of mice on a high-fat diet.
To investigate whether Foxo3a expression is correlated with p27kip1 protein levels as well as how it might be clinically relevant, we evaluated the expression of Foxo3a in several ovarian tumors. Immunohistochemical analysis was performed in 63 cases of ovarian tumors. Ten cases were evaluated by Western blot analysis. There was a correlation observed between Foxo3a over-expression and clinic pathological parameters (p = 0.032). Kaplan-Meier survival analysis showed that Foxo3a low expression was significantly associated with poor prognosis of patients. It may be a useful prognostic marker and target in ovarian cancer.
Precursor (pre)-CRISPR RNA (crRNA) processing can occur in both the repeat and spacer regions, leading to the removal of specific segments from the repeat and spacer sequences, thereby facilitating crRNA maturation. The processing of pre-crRNA repeat by Cas effector and ribonuclease has been observed in CRISPR-Cas9 and CRISPR-Cas12a systems. However, no evidence of pre-crRNA spacer cleavage by any enzyme has been reported in these systems. In this study, we demonstrate that DNA target binding triggers efficient cleavage of pre-crRNA spacers by type II and V Cas effectors such as Cas12a, Cas12b, Cas12i, Cas12j and Cas9. We show that the pre-crRNA spacer cleavage catalyzed by Cas12a and Cas9 has distinct characteristics. Activation of the cleavage activity in Cas12a is induced by both single-stranded DNA (ssDNA) and double-stranded DNA target binding, whereas only ssDNA target binding triggers cleavage in Cas9 toward the pre-crRNA spacer. We present a series of structures elucidating the underlying mechanisms governing conformational activation in both Cas12a and Cas9. Furthermore, leveraging the trans-cutting activity of the pre-crRNA spacer, we develop a one-step DNA detection method characterized by its simplicity, high sensitivity, and excellent specificity.
Reduced immunity can harm the health of the organism, and nowadays, improving immunity is getting more and more attention, so the nutrients with immune boosting function (acerola cherry, taurine, zinc gluconate, and lactoferrin) are compounded in the best ratio to develop a nutritional formula food, and evaluated by cellular immunity, humoral immunity, non-specific immunity. In this study, an immunocompromised mice model was established using cyclophosphamide (CTX), the ability and difference of different components to enhance the immunity of mice were determined by the gavage of different components. The results showed that the nutritional formula food could recover the body weight of immunocompromised mice, promote the development of immune organs in immunocompromised mice, enhance the delayed-type hypersensitivity (DTH) response, the ability to produce serum hemolysin and the phagocytosis of monocytes in immunocompromised mice, and increase the levels of immunoglobulin A (IgA), IgG and IgM in the serum of immunocompromised mice. It has proved that this nutritional formula food (containing acerola cherry, taurine, zinc gluconate, and lactoferrin) has synergistic effect and can work together on humoral immunity, cellular immunity and non-specific immunity to improve the immune resistance of mice, and has promising application.
Treatments targeted for gut microbial regulation are newly developed strategies in constipation management. In this study, the alleviating effects of gut micro-ecologically regulatory treatments on constipation in mice were investigated. Male BALB/c mice were treated with loperamide to induce constipation, and then the corresponding intervention was administered in each group, respectively. The results showed that administration of mixed probiotics (MP), a 5-fold dose of postbiotics (P5), both synbiotics (S and S2), as well as mixed probiotics and postbiotics (MPP) blend for 8 days shortened the time to the first black stool, raised fecal water content, promoted intestinal motility, and increased serum motilin level in loperamide-treated mice. Furthermore, these treatments altered gut microbial composition and metabolism of short-chain fatty acids (SCFA). Based on linear regression analysis, SCFA was positively correlated with serum motilin except for isobutyrate. It suggested gut microbial metabolites affected secretion of motilin to increase gastrointestinal movement and transportation function and thus improved pathological symptoms of mice with constipation. In conclusion, the alteration of gut micro-ecology is closely associated with gastrointestinal function, and it is an effective way to improve constipation via probiotic, prebiotic, and postbiotic treatment.