Extended-spectrum-β-lactamase (ESBL)/AmpC producing Enterobacteriaceae have been reported worldwide amongst isolates obtained from humans, food-producing animals, companion animals, and environmental sources. However, data on prevalence of fecal carriage of ESBL/AmpC producing Enterobacteriaceae in healthy companion animals is limited. This pilot study describes the prevalence of ESBL/AmpC encoding genes in healthy cats and dogs, and cats and dogs with diarrhea. Twenty fecal samples of each group were cultured on MacConkey agar supplemented with 1 mg/L cefotaxime and in LB-enrichment broth supplemented with 1 mg/L cefotaxime, which was subsequently inoculated on MacConkey agar supplemented with 1 mg/L cefotaxime. ESBL/AmpC genes were identified using the Check-Points CT103 micro array kit and subsequently by sequencing analysis. Chromosomal ampC promoter mutations were detected by PCR and sequencing analysis. From the healthy and diarrheic dogs, respectively 45 and 55% were positive for Escherichia coli with reduced susceptibility for cefotaxime. From the healthy and diarrheic cats, the estimated prevalence was respectively 0 and 25%. One diarrheic cat was positive for both reduced susceptible E. coli and Proteus mirabilis. The ESBL/AmpC genes found in this study were mainly bla CTX-M-1, but also bla CTX-M-14, bla CTX-M-15, bla TEM-52-StPaul, bla SHV-12, and bla CMY-2 were detected. This pilot study showed that the prevalence of ESBL/AmpC producing Enterobacteriaceae in healthy and diarrheic dogs, and diarrheic cats was relatively high. Furthermore, the genes found were similar to those found in isolates of both human and food-producing animal origin. However, since the size of this study was relatively small, extrapolation of the data to the general population of cats and dogs should be done with great care.
This study was conducted to evaluate the performance of a screening protocol to detect and isolate mcr-positive Escherichia coli and Salmonella spp. from animal caecal content and meat samples. We used a multicentre approach involving 12 laboratories from nine European countries. All participants applied the same methodology combining a multiplex PCR performed on DNA extracted from a pre-enrichment step, followed by a selective culture step on three commercially available chromogenic agar plates. The test panel was composed of two negative samples and four samples artificially contaminated with E. coli and Salmonella spp. respectively harbouring mcr-1 or mcr-3 and mcr-4 or mcr-5 genes. PCR screening resulted in a specificity of 100% and a sensitivity of 83%. Sensitivity of each agar medium to detect mcr-positive colistin-resistant E. coli or Salmonella spp. strains was 86% for CHROMID® Colistin R, 75% for CHROMagarTM COL-APSE and 70% for COLISTIGRAM. This combined method was effective to detect and isolate most of the E. coli or Salmonella spp. strains harbouring different mcr genes from food-producing animals and food products and might thus be used as a harmonized protocol for the screening of mcr genes in food-producing animals and food products in Europe.
Abstract Background Gastric acid-suppressive therapy has been suggested to increase the risk for intestinal carriage of MDR Enterobacterales, but there is scarce community-based evidence substantiating this risk. Objectives To investigate if acid-suppressant use is associated with a risk of intestinal carriage of ESBL and carbapenemase-producing Enterobacterales (ESBL-E) in the open population, and to assess possible modifying factors. Methods Within the framework of a nationwide seroprevalence study, we identified a population-based cross-sectional cohort comprising 2746 adults (≥18 years), who provided stool specimens between February 2016 and June 2017. Specimens were tested by phenotypic assays and confirmatory genotype analysis to detect carriage of ESBL-E. Covariate data were extracted from self-administered questionnaires. ORs and 95% CIs were estimated using multivariable multilevel logistic regression, controlling for confounders informed by directed acyclic graphs. Results Among 2746 participants, 316 (11.5%) used acid suppressants; the prevalence of ESBL-E carriage was 7.4% (95% CI, 6.1%–8.6%). Current use of acid suppressants was not associated with ESBL-E carriage (adjusted OR [aOR], 1.05; 95% CI, 0.64–1.74); lifestyle and comorbidity did not modify this association. A higher BMI (≥25 kg/m2) (aOR, 1.42 [95% CI, 1.02–1.98]), non-Western ethnic origin (aOR, 1.96 [95% CI, 1.34–2.87]), travel to Eastern-Mediterranean, Western-Pacific or South-East Asia regions (aOR, 3.16 [95% CI, 1.71–5.83]) were associated with ESBL-E carriage. Sensitivity analyses confirmed these results; spline analysis supported a BMI-associated risk. Conclusions In this open population study, current use of acid suppressants was not associated with ESBL-E carriage. Travel to high-endemic regions and non-Western ethnicity were confirmed as risk factors, while a higher BMI emerged as a potential new risk for ESBL-E carriage.
Abstract Background Animals are a reservoir for ESBL/pAmpC-producing Escherichia coli/Klebsiella pneumoniae (ESBL-E/K). We investigated the association between occupational contact with different types of animals and the prevalence of ESBL-E/K carriage among veterinary healthcare workers, assessed molecular characteristics of ESBL-E/K, and followed-up on the ESBL-E/K carriage status of participants and their household members. Methods Participants completed a questionnaire about their contact with animals at work and at home, health status, travel behaviour and hygiene, and sent in a faecal sample which was tested for the presence of ESBL-E/K. Resistance genes were typed using PCR and sequencing . ESBL-E/K positive participants and their household members were followed up after 6 months. Risk factors were analysed using multivariable logistic regression methods. Results The prevalence of ESBL-E/K carriage was 9.8% (47/482; 95%CI 7.4–12.7). The most frequently occurring ESBL genes were bla CTX-M-15 , bla CTX-M-14 and bla DHA-1 . The predominant sequence type was ST131. None of the occupation related factors, such as contact with specific animal species, were significantly associated with ESBL-E/K carriage, whereas travel to Africa, Asia or Latin America in the past 6 months (OR 4.4), and stomach/bowel complaints in the past 4 weeks (OR 2.2) were. Sixteen of 33 initially ESBL-E/K positive participants (48.5%) tested positive again 6 months later, in 14 persons the same ESBL gene and E. coli ST was found. Four of 23 (17.4%) household members carried ESBL-E/K, in three persons this was the same ESBL gene and E. coli ST as in the veterinary healthcare worker. Conclusions Despite the absence of specific occupation related risk factors, ESBL-E/K carriage in veterinary healthcare workers was high compared to the prevalence in the general Dutch population (5%). This indicates that occupational contact with animals is a potential source of ESBL-E/K for the population at large.
This study aimed to compare ESBL-producing Escherichia coli causing infections in humans with infecting or commensal isolates from animals and isolates from food of animal origin in terms of the strain types, the ESBL gene present and the plasmids that carry the respective ESBL genes. A collection of 353 ESBL-positive E. coli isolates from the UK, the Netherlands and Germany were studied by MLST and ESBL genes were identified. Characterization of ESBL gene-carrying plasmids was performed using PCR-based replicon typing. Moreover, IncI1-Iγ and IncN plasmids were characterized by plasmid MLST. The ESBL-producing E. coli represented 158 different STs with ST131, ST10 and ST88 being the most common. Overall, blaCTX-M-1 was the most frequently detected ESBL gene, followed by blaCTX-M-15, which was the most common ESBL gene in the human isolates. The most common plasmid replicon type overall was IncI1-Iγ followed by multiple IncF replicons. ESBL genes were present in a wide variety of E. coli STs. IncI1-Iγ plasmids that carried the blaCTX-M-1 gene were widely disseminated amongst STs in isolates from animals and humans, whereas other plasmids and STs appeared to be more restricted to isolates from specific hosts.
Successful repopulation programs of Eurasian beavers (Castor fiber) have resulted in an increase in beaver populations throughout Europe. This may be of public health relevance because beavers can host multiple zoonotic pathogens. From March 2018 to March 2020, opportunistic testing of dead beavers was performed for hepatitis E virus, orthohantavirus, Anaplasma phagocytophilum, Bartonella spp., extended-spectrum-betalactamase or AmpC (ESBL/AmpC-)-producing Enterobacteriaceae, Francisella tularensis, Leptospira spp., Neoehrlichia mikurensis, Babesia spp., Echinococcus multilocularis, Toxoplasma gondii, and Trichinella spp. From the 24 beavers collected, three zoonotic pathogens were detected. One beaver was positive for T. gondii, one was positive for ESBL/AmpC-producing Enterobacteriaceae, and one was positive for N. mikurensis. The latter finding indicates that beavers can be bitten by Ixodes ricinus and be exposed to tick-borne pathogens. The detected ESBL/AmpC-gene was blaCMY-2 in an Escherichia coli ST6599. The findings suggest that the role of beavers in the spread of zoonotic diseases in the Netherlands is currently limited.
The putative virulence and antimicrobial resistance gene contents of extended spectrum β-lactamase (ESBL)-positive E. coli (n=629) isolated between 2005 and 2009 from humans, animals and animal food products in Germany, The Netherlands and the UK were compared using a microarray approach to test the suitability of this approach with regard to determining their similarities. A selection of isolates (n=313) were also analysed by multilocus sequence typing (MLST). Isolates harbouring bla(CTX-M-group-1) dominated (66%, n=418) and originated from both animals and cases of human infections in all three countries; 23% (n=144) of all isolates contained both bla(CTX-M-group-1) and bla(OXA-1-like) genes, predominantly from humans (n=127) and UK cattle (n=15). The antimicrobial resistance and virulence gene profiles of this collection of isolates were highly diverse. A substantial number of human isolates (32%, n=87) did not share more than 40% similarity (based on the Jaccard coefficient) with animal isolates. A further 43% of human isolates from the three countries (n=117) were at least 40% similar to each other and to five isolates from UK cattle and one each from Dutch chicken meat and a German dog; the members of this group usually harboured genes such as mph(A), mrx, aac(6')-Ib, catB3, bla(OXA-1-like) and bla(CTX-M-group-1). forty-four per cent of the MLST-typed isolates in this group belonged to ST131 (n=18) and 22% to ST405 (n=9), all from humans. Among animal isolates subjected to MLST (n=258), only 1.2% (n=3) were more than 70% similar to human isolates in gene profiles and shared the same MLST clonal complex with the corresponding human isolates. The results suggest that minimising human-to-human transmission is essential to control the spread of ESBL-positive E. coli in humans.