17beta-estradiol and 1,25-dihydroxyvitamin D(3)()(calcitriol) rapidly increase (< 5 sec) the concentration of intracellular calcium by mobilizing Ca(2+) from the endoplasmic reticulum and forming inositol 1,4,5-trisphosphate (InsP(3)) and diacylglycerol. Calcitriol increases InsP(3) formation via activation of phospholipase C (PLC)-beta1 linked to a pertussis toxin (PTX)-insensitive G-protein, and estradiol via activation of PLC-beta2 linked to a PTX-sensitive G-protein. Since PLC are effectors of different subunits of various G-proteins, we looked for and identified several G-subunits (Galpha(q/11), Galphas, Galphai, Gbeta and Ggamma) in female rat osteoblasts using Western immunoblotting. The action of calcitriol on InsP(3) formation and Ca(2+) mobilization in Fura-2-loaded confluent osteoblasts involved Galpha(q/11). The membrane effects of estradiol involved Gbetagamma; subunits, and principally Gbeta subunits, but not alpha-subunits. These results may provide additional evidence for membrane receptors of steroid hormones. Since PLC-beta1 is the target effector of Galpha(q/11), whereas PLC-beta2 is only activated by betagamma subunits, this specificity may help to generate membrane receptor-specific responses in vivo.