Cytauxzoon felis is a tick-borne piroplasmid hemoparasite that causes life-threatening disease in cats. Despite the critical role that ticks play in pathogen transmission, our knowledge regarding the C. felis life cycle remains limited to the feline hosts. Specific life stages of C. felis within the tick host have never been visualized microscopically and previous investigations have been limited to molecular detection by polymerase chain reaction (PCR). Sporozoites are the infectious stage of piroplasmids that are transmitted by ticks. In other tick-borne piroplasmids, sporozoite-based vaccines play a key role in disease prevention and management. We believe sporozoites have similar potential for cytauxzoonosis. Therefore, the objective of this study was to use different molecular and microscopic techniques to detect and evaluate C. felis sporozoites in tick salivary glands (SG). A total of 140 Amblyomma americanum adults that were fed on C. felis-infected cats as nymphs were included for this study. Specifically, dissected SGs were quartered and subjected to C. felis RT-PCR, RNAscope® in situ hybridization (ISH), histology, direct azure staining, and transmission electron microscopy (TEM). Cytauxzoon felis RT-PCR was also performed on half tick (HT) carcasses after SG dissection. Cytauxzoon felis RNA was detected in SGs of 17/140 ticks. Of these, 7/17 ticks had microscopic visualization via ISH and/or TEM. The remaining 10/17 ticks had only molecular detection of C. felis in SGs via RT-PCR without visualization. Cytauxzoon felis RNA was detected solely in HT carcasses via RT-PCR in 9/140 ticks. In ISH-positive tick SGs, hybridization signals were present in cytoplasms of SG acinar cells. TEM captured rare C. felis organisms with characteristic ultrastructural features of sporozoites. This study describes the first direct visualization of any developing stage of C. felis in ticks. Forthcoming studies should employ a combination of molecular and microscopic techniques to investigate the C. felis life cycle in A. americanum.
This study sought to investigate changes in magnetic resonance imaging (MRI) ventricular volumes and vascular dimensions before hemi-Fontan (HF) and before total cavopulmonary connection (TCPC) in children with hypoplastic left heart syndrome (HLHS). The systemic right ventricle (RV) in HLHS is subject to significant changes in volume loading throughout the surgical stages of palliation, particularly after the HF. Fifty-eight patients had paired pre-HF and pre-TCPC MRI for assessment of changes of RV volumes, neoaortic flow, and vascular dimensions. Comparison of pre-HF and pre-TCPC MRI results showed a decrease of indexed RV end-diastolic volume and end-systolic volume (98 ml/m2 to 87 ml/m2 and 50 ml/m2 to 36 ml/m2, respectively) with stroke volume remaining constant (49 ml/m2 vs. 51 ml/m2), leading to an increased RV ejection fraction (51% vs. 59%). These findings persisted after excluding the 3 patients who underwent tricuspid valve repair as part of their HF procedure. Indexed RV end-diastolic volume plotted against neoaortic stroke volume demonstrated a Frank-Starling–like curve that shifted upward after HF. The indexed distal left and right cross-sectional pulmonary artery areas were reduced after HF. In HLHS, serial MRI shows the adaptation of the systemic RV after HF with volume reduction in the context of a preserved stroke volume and an increased ejection fraction. The staged palliation in HLHS may be a risk factor particularly for reduced left pulmonary artery growth in itself as no factors investigated in this study were found to significantly impact on this.
The diversity of protein isoforms arising from alternative splicing is thought to modulate fine-tuning of synaptic plasticity. Fragile X mental retardation protein (FMRP), a neuronal RNA binding protein, exists in isoforms as a result of alternative splicing, but the contribution of these isoforms to neural plasticity are not well understood. We show that two isoforms of Drosophila melanogaster FMRP (dFMR1) have differential roles in mediating neural development and behavior functions conferred by the dfmr1 gene. These isoforms differ in the presence of a protein interaction module that is related to prion domains and is functionally conserved between FMRPs. Expression of both isoforms is necessary for optimal performance in tests of short- and long-term memory of courtship training. The presence or absence of the protein interaction domain may govern the types of ribonucleoprotein (RNP) complexes dFMR1 assembles into, with different RNPs regulating gene expression in a manner necessary for establishing distinct phases of memory formation.
Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.
Abstract A 16-year-old boy presented to the congenital heart disease department with oedema and chronic cough productive of casts. He had previously undergone Fontan completion for complex congenital heart disease overseas. Examination and basic investigations showed relapsed protein-losing enteropathy and plastic bronchitis, two significant complications of the Fontan circulation. He was extensively investigated, and his medical therapy optimized. Although initially referred for heart transplant assessment, he has been taken off the transplant list after good response to medical therapy alone. This case shows the complex multidisciplinary management of the adolescent Fontan patient with life-threatening complications.
BackgroundThe geometry and heterogeneity of the right ventricle in hypoplastic left heart syndrome makes objective echocardiographic assessment of systolic function challenging. Consequently, subjective echocardiographic assessment of right ventricular (RV) function is still routinely undertaken. The aims of this study were to compare this with magnetic resonance imaging (MRI), investigate the impact of experience and training on the accuracy of subjective assessment, and critically analyze the role of echocardiography to detect impaired systolic function.MethodsA retrospective analysis of prospectively acquired data was performed. Children with hypoplastic left heart syndrome underwent routine preoperative cardiac MRI and echocardiography under the same general anesthetic. Echocardiograms were reviewed, and members of the congenital heart disease team with differing echocardiography experience subjectively graded RV systolic function (good, moderate, or poor). This was compared with MRI-derived ejection fraction.ResultsTwenty-eight patients at different palliative stages were included. Twenty-eight observers were divided into five experience categories (congenital heart disease junior trainees to attending cardiologists). Median agreement was 47.6% (range, 31.4%–58.2%), with the lowest agreement among junior trainees and the highest among attending cardiologists. When used as a screening test for poor RV systolic function, the median sensitivity of echocardiography was 0.89 (range, 0.86–0.96), and median specificity was 0.45 (range, 0.26–0.55). The highest sensitivity was observed among junior trainees but with the lowest specificity. The highest specificity was observed among attending cardiologists (0.55).ConclusionsAgreement between echocardiographic and MRI RV ejection fraction improves with experience but remains suboptimal. When used as a screening test for poor RV function, echocardiography is sensitive, but specificity is heavily influenced by operator experience. The geometry and heterogeneity of the right ventricle in hypoplastic left heart syndrome makes objective echocardiographic assessment of systolic function challenging. Consequently, subjective echocardiographic assessment of right ventricular (RV) function is still routinely undertaken. The aims of this study were to compare this with magnetic resonance imaging (MRI), investigate the impact of experience and training on the accuracy of subjective assessment, and critically analyze the role of echocardiography to detect impaired systolic function. A retrospective analysis of prospectively acquired data was performed. Children with hypoplastic left heart syndrome underwent routine preoperative cardiac MRI and echocardiography under the same general anesthetic. Echocardiograms were reviewed, and members of the congenital heart disease team with differing echocardiography experience subjectively graded RV systolic function (good, moderate, or poor). This was compared with MRI-derived ejection fraction. Twenty-eight patients at different palliative stages were included. Twenty-eight observers were divided into five experience categories (congenital heart disease junior trainees to attending cardiologists). Median agreement was 47.6% (range, 31.4%–58.2%), with the lowest agreement among junior trainees and the highest among attending cardiologists. When used as a screening test for poor RV systolic function, the median sensitivity of echocardiography was 0.89 (range, 0.86–0.96), and median specificity was 0.45 (range, 0.26–0.55). The highest sensitivity was observed among junior trainees but with the lowest specificity. The highest specificity was observed among attending cardiologists (0.55). Agreement between echocardiographic and MRI RV ejection fraction improves with experience but remains suboptimal. When used as a screening test for poor RV function, echocardiography is sensitive, but specificity is heavily influenced by operator experience.
Background The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Methodology and Principle Findings Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Conclusion Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted.