logo
    Short- and Long-Term Memory Are Modulated by Multiple Isoforms of the Fragile X Mental Retardation Protein
    57
    Citation
    75
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The diversity of protein isoforms arising from alternative splicing is thought to modulate fine-tuning of synaptic plasticity. Fragile X mental retardation protein (FMRP), a neuronal RNA binding protein, exists in isoforms as a result of alternative splicing, but the contribution of these isoforms to neural plasticity are not well understood. We show that two isoforms of Drosophila melanogaster FMRP (dFMR1) have differential roles in mediating neural development and behavior functions conferred by the dfmr1 gene. These isoforms differ in the presence of a protein interaction module that is related to prion domains and is functionally conserved between FMRPs. Expression of both isoforms is necessary for optimal performance in tests of short- and long-term memory of courtship training. The presence or absence of the protein interaction domain may govern the types of ribonucleoprotein (RNP) complexes dFMR1 assembles into, with different RNPs regulating gene expression in a manner necessary for establishing distinct phases of memory formation.
    Keywords:
    Protein isoform
    Abstract Most human genes are alternatively spliced, allowing for a large expansion of the proteome.The multitude of regulatory inputs to splicing limits the potential to infer general principles from investigating native sequences. Here, we created a rationally designed library of >32,000 splicing events to dissect the complexity of splicing regulation through systematicsequence alterations. Measuring RNA and protein splice isoforms allowed us to investigate bothcause and effect of splicing decisions, quantify diverse regulatory inputs and accurately predict (R2=0.75–0.85) isoform ratios from sequence and secondary structure. By profiling individual cells, we measure the cell-to-cell variability of splicing decisions and show that it can be encoded in the DNA and influenced by regulatory inputs, opening the door for a novel,single-cell perspective on splicing regulation.
    Proteome
    Exonic splicing enhancer
    Splicing factor
    Minigene
    Citations (1)
    Alternative splicing of pre-mRNA is a key mechanism for increasing the complexity of proteins in humans, causing a diversity of expression of transcriptomes and proteomes in a tissue-specific manner. Alternative splicing is regulated by a variety of splicing factors. However, the changes and errors of splicing regulation caused by splicing factors are strongly related to many diseases, something which represents one of this study’s main interests. Further understanding of alternative splicing regulation mediated by cellular factors is also a prospective choice to develop specific drugs for targeting the dynamic RNA splicing process. In this review, we firstly concluded the basic principle of alternative splicing. Afterwards, we showed how splicing isoforms affect physiological activities through specific disease examples. Finally, the available treatment methods relative to adjusting splicing activities have been summarized.
    Proteome
    Splicing factor
    Minigene
    Citations (70)
    Alternative splicing (AS) is an important mechanism used to generate greater transcriptomic and proteomic diversity from a finite genome. Nearly all human gene transcripts are alternatively spliced and can produce protein isoforms with divergent and even antagonistic properties that impact cell functions. Many AS events are tightly regulated in a cell-type or tissue-specific manner, and at different developmental stages. AS is regulated by RNA-binding proteins, including cell- or tissue-specific splicing factors. In the past few years, technological advances have defined genome-wide programs of AS regulated by increasing numbers of splicing factors. These splicing regulatory networks (SRNs) consist of transcripts that encode proteins that function in coordinated and related processes that impact the development and phenotypes of different cell types. As such, it is increasingly recognized that disruption of normal programs of splicing regulated by different splicing factors can lead to human diseases. We will summarize examples of diseases in which altered expression or function of splicing regulatory proteins has been implicated in human disease pathophysiology. As the role of AS continues to be unveiled in human disease and disease risk, it is hoped that further investigations into the functions of numerous splicing factors and their regulated targets will enable the development of novel therapies that are directed at specific AS events as well as the biological pathways they impact.
    Splicing factor
    Minigene
    Exonic splicing enhancer
    Citations (130)
    The importance of alternative splicing in regulating apoptosis has been suggested by findings of functionally antagonistic proteins generated by alternative splicing of several genes involved in apoptosis. Among these, Ich-1 (also named as caspase-2) encodes a member of the caspase family of proteases. Two forms of Ich-1 are produced as a result of alternative splicing: Ich-1L, which causes apoptosis, and Ich-1S, which prevents apoptosis. The precise nature of Ich-1 alternative splicing and its regulation remain unknown. Here, we show that the production of Ich-1L and Ich-1S transcripts results from alternative exclusion or inclusion of a 61-bp exon. Several splicing factors can regulate Ich-1 splicing. Serine-arginine-rich proteins SC35 and ASF/SF2 promote exon skipping, decreasing the ratio of Ich-1S to Ich-1L transcripts; whereas heterogeneous nuclear ribonucleoprotein A1 facilitates exon inclusion, increasing this ratio. Furthermore, in cultured cells, SC35 overexpression increases apoptosis; whereas heterogeneous nuclear ribonucleoprotein A1 overexpression decreases apoptosis. These results provide the first direct evidence that splicing factors can regulate Ich-1 alternative splicing and suggest that alternative splicing may be an important regulatory mechanism for apoptosis.
    Heterogeneous nuclear ribonucleoprotein
    SR protein
    Exonic splicing enhancer
    Minigene
    Protein splicing
    Splicing factor
    Citations (144)
    Through alternative splicing, most human genes produce multiple isoforms in a cell-, tissue-, and disease-specific manner. Numerous studies show that alternative splicing is essential for development, diseases, and their treatments. Despite these important examples, the extent and biological relevance of splicing are currently unknown.To solve this problem, we developed pairedGSEA and used it to profile transcriptional changes in 100 representative RNA-seq datasets. Our systematic analysis demonstrates that changes in splicing, on average, contribute to 48.1% of the biological signal in expression analyses. Gene-set enrichment analysis furthermore indicates that expression and splicing both convey shared and distinct biological signals.These findings establish alternative splicing as a major regulator of the human condition and suggest that most contemporary RNA-seq studies likely miss out on critical biological insights. We anticipate our results will contribute to the transition from a gene-centric to an isoform-centric research paradigm.
    Exonic splicing enhancer
    Minigene
    Splicing factor
    SR protein
    Heterogeneous nuclear ribonucleoprotein
    Precursor mRNA
    Protein splicing
    Citations (23)
    During pre-mRNA splicing events, introns are removed from the pre-mRNA, and the remaining exons are connected together to form a single continuous molecule. Alternative splicing is a common mechanism for the regulation of gene expression in eukaryotes. More than 90% of human genes are known to undergo alternative splicing. The most common type of alternative splicing is exon skipping, which is also known as cassette exon. Other known alternative splicing events include alternative 5' splice sites, alternative 3' splice sites, intron retention, and mutually exclusive exons. Alternative splicing events are controlled by regulatory proteins responsible for both positive and negative regulation. In this review, we focus on neuronal splicing regulators and discuss several notable regulators in depth. In addition, we have also included an example of splicing regulation mediated by the RBFox protein family. Lastly, as previous studies have shown that a number of splicing factors are associated with neuronal diseases such as Alzheime's disease (AD) and Autism spectrum disorder (ASD), here we consider their importance in neuronal diseases wherein the underlying mechanisms have yet to be elucidated.
    Exon skipping
    Exonic splicing enhancer
    Minigene
    splice
    Splice site mutation
    Citations (14)