This double-blind, randomized, three-way crossover study explored the potential pharmacokinetic and pharmacodynamic interactions between ethanol and brivaracetam in 18 healthy males, as required for the development of CNS-active drugs. Subjects received (A) ethanol+brivaracetam, (B) ethanol placebo+brivaracetam and (C) ethanol+brivaracetam placebo. Ethanol was infused as a 5.5-hour intravenous clamp with the first 0.5-hour as loading phase to a target level of 0.6 g/L, and brivaracetam was orally administered as a single 200 mg dose. No relevant pharmacokinetic interactions were observed. Co-administration of brivaracetam and ethanol resulted in decreased saccadic peak velocity, smooth pursuit, adaptive tracking and VAS alertness, and increased body sway, saccadic reaction time and VAS score for ethanol effect compared with brivaracetam alone or ethanol alone. Additionally, the immediate word recall scores were generally lower when brivaracetam was co-administered with ethanol, whereas the delayed word test did not show clear additional effects. A post-hoc exploratory analysis for supra-additivity suggested that most pharmacodynamic effects were likely to be additive in nature, except for adaptive tracking, which appeared to be slightly supra-additive. In conclusion, brivaracetam increased ethanol effects on psychomotor function, attention and memory in healthy males. Intake of brivaracetam with alcohol is not recommended.
An ideal drug for outpatient treatments under conscious sedation would have both sedative and analgesic properties. CB1/CB2 agonists are expected to have sedative, amnestic, analgesic and anti-emetic properties. The main objective of this first study in humans was to assess the sedative properties of intravenous Org 26828. In addition, pharmacokinetics, amnestic properties, postural stability, and behavioural and cardiovascular effects were studied. Midazolam intravenous 0.1 mg/kg and placebo were used as controls. The pharmacokinetic parameters (Cmax and AUC0-inf) of the main metabolite Org 26761 were proportional to dose. No effects were observed after doses up to 0.3 μg/kg of Org 26828. Dose-related effects were observed at higher doses. Although subjects reported subjective sedation after administration of Org 26828 at 3 and 6 μg/kg, the observed sedation was considerably less than after midazolam. Doses higher than the maximum tolerated dose of 1 μg/kg of Org 26828 caused unpleasant central nervous system effects (anxiety, paranoia, hallucinations). Therefore, Org 26828 is not suitable for providing sedation for outpatient surgical procedures.
One hundred and ninety patients with symptomatic diabetic peripheral neuropathy took part in a double blind multicentre trial of either placebo or tolrestat 200 mg once daily for 6 months. Painful and paraesthetic symptoms, vibration sensory threshold, and nerve conduction velocity (NCV) were assessed as efficacy end-points during the trial. There was an equally marked improvement of painful symptoms during the trial in the tolrestat and placebo groups. A difference in the improvement of paraesthetic symptoms was found however in favour of the placebo group at 24 weeks (p less than 0.02). The deterioration in mean vibration threshold of the tolrestat group was less than placebo at 24 weeks at all 3 sites measured, and reached significance at the carpal site (p less than 0.05). Significant improvements in median motor NCV and in the mean NCV of the four motor nerves were also seen in tolrestat treated patients at 24 weeks compared to placebo (p less than 0.05). In addition, significant changes in favour of tolrestat were seen when the number of motor nerves per patient with NCV increased during the trial was analysed (p less than 0.001). Concordance analysis of patients with increased mean motor NCV and improvement in painful symptoms demonstrated a positive effect for tolrestat compared to placebo (p less than 0.02). Mild reversible elevations of hepatic transaminases were seen in a few patients treated with tolrestat, with no other significant adverse effects. Tolrestat may therefore be helpful in diabetic peripheral neuropathy, where there is little opportunity for therapeutic intervention apart from effort to achieve normoglycaemic control.
In this study, the hypothesis that haloperidol would lead to an amelioration of Δ9-tetrahydrocannabinol (THC)-induced ‘psychotomimetic’ effects was investigated. In a double-blind, placebo-controlled, partial three-way crossover ascending dose study the effects of THC, haloperidol and their combination were investigated in 35 healthy, male mild cannabis users, measuring Positive and Negative Syndrome Scale, Visual Analogue Scales for alertness, mood, calmness and psychedelic effects, saccadic and smooth pursuit eye measurements, electroencephalography, Body Sway, Stroop test, Visual and Verbal Learning Task, hormone levels and pharmacokinetics. Compared with placebo, THC significantly decreased smooth pursuit, Visual Analogue Scales alertness, Stroop test performance, immediate and delayed word recall and prolactin concentrations, and significantly increased positive and general Positive and Negative Syndrome Scale score, Visual Analogue Scales feeling high, Body Sway and electroencephalography alpha. Haloperidol reversed the THC-induced positive Positive and Negative Syndrome Scale increase to levels observed with haloperidol alone, but not THC-induced ‘high’ feelings. Compared with placebo, haloperidol significantly decreased saccadic peak velocity, smooth pursuit, Visual Analogue Scales mood and immediate and delayed word recall and significantly increased Body Sway, electroencephalography theta and prolactin levels. THC-induced increases in positive Positive and Negative Syndrome Scale but not in Visual Analogue Scales feeling high were reversed by haloperidol. This indicates that psychotic-like effects induced by THC are mediated by dopaminergic systems, but that other systems are involved in ‘feeling high’. Additionally, the clear reductions of psychotic-like symptoms by a clinically relevant dose of haloperidol suggest that THC administration may be a useful pharmacological cannabinoid model for psychotic effects in healthy volunteers.