Outcomes are poor for patients with congenital adrenal hyperplasia (CAH), in part due to the supraphysiological glucocorticoid doses required to control adrenal androgen excess. Hydrocortisone (i.e. cortisol) is the recommended glucocorticoid for treatment of CAH. However, the other endogenous glucocorticoid in humans, corticosterone, is actively transported out of metabolic tissues such as adipose tissue and muscle, so we hypothesized that corticosterone could control adrenal androgens while causing fewer metabolic adverse effects than hydrocortisone.
Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels. To identify the specific dietary fats that regulate adipose 11β-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11β-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11β-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11β-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11β-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11β-HSD1. The dynamic depot-selective relationship between adipose 11β-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.
Local glucocorticoid (GC) action depends on intracellular GC metabolism by 11β-hydroxysteroid dehydrogenases (11βHSDs). 11βHSD1 activates GCs, while 11βHSD2 inactivates GCs. Adipocyte-specific amplification of GCs through transgenic overexpression of 11βHSD1 produces visceral obesity and the metabolic syndrome in mice. To determine whether adipocyte-specific inactivation of GCs protects against this phenotype, we created a transgenic model in which human 11βHSD2 is expressed under the control of the murine adipocyte fatty acid binding protein (aP2) promoter (aP2-h11βHSD2). Transgenic mice have increased 11βHSD2 expression and activity exclusively in adipose tissue, with the highest levels in subcutaneous adipose tissue, while systemic indexes of GC exposure are unchanged. Transgenic mice resist weight gain on high-fat diet due to reduced fat mass accumulation. This improved energy balance is associated with decreased food intake, increased energy expenditure, and improved glucose tolerance and insulin sensitivity. Adipose tissue gene expression in transgenic mice is characterized by decreased expression of leptin and resistin and increased expression of adiponectin, peroxisome proliferator–activated receptor γ, and uncoupling protein 2. These data suggest that reduction of active GCs exclusively in adipose tissue is an important determinant of a favorable metabolic phenotype with respect to energy homeostasis and the metabolic syndrome.
The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) amplifies intracellular glucocorticoid action in vivo. 11beta-HSD-1 activity is increased in adipose tissues of obese humans and genetically obese rodents, providing a mechanistic basis for the similarities between metabolic disease arising from high circulating glucocorticoids (Cushing's syndrome) and idiopathic obesity/metabolic syndrome where plasma glucocorticoids are typically unaltered. Fat-specific overexpression of 11beta-HSD-1 produces a metabolic syndrome in mice, whereas 11beta-HSD-1 null mice resist high-fat diet (HF)-induced visceral obesity and its metabolic consequences. Here we compared the effects of chronic (18 wk) HF feeding on adipose 11beta-HSD-1 activity in strains of mice that are either resistant (A/J) or prone (C57BL/6J) to metabolic disease. 11beta-HSD-1 activity was highest in sc fat, followed by epididymal fat, with lowest activity in the mesenteric visceral depot of both strains. 11beta-HSD-1 activity was lower in white adipose tissues of A/J compared with C57BL/6J mice. Chronic HF feeding unexpectedly caused a down-regulation of 11beta-HSD-1 in adipose tissues of both strains, despite comparable adiposity. However, A/J mice down-regulated adipose 11beta-HSD-1 to a significantly lower level than C57BL/6J mice in white and thermogenic brown adipose tissues. We propose that a lower adipose 11beta-HSD-1 set point affords a metabolic protection to A/J mice. Adaptive down-regulation of adipose 11beta-HSD-1 in response to chronic HF represents a novel mechanism that may counteract metabolic disease.