Earlier this year, UTC Aerospace Systems introduced the Aircraft System Health Management (ASHM) Tool, a web application that takes in Aircraft Condition Monitoring Function (ACMF) reports for selected subsystems and components of an aircraft platform, parses and processes the reported parameters against thresholds and computes estimated or expected values for some key parameters, and serves the report data and the processed results as part of a fleet view available to airline and maintenance users.
The ASHM application uses Informatica PowerCenter to parse and store incoming report data and Informatica RulePoint to apply alert rules and analytic processing to the report data as it is persisted to the ASHM database. This paper describes how UTC Aerospace Systems has leveraged a commercial off-the-shelf tool suite rather than continue to build custom components for the ASHM architecture, with the goals of achieving a short development cycle, robust transaction processing, and scalability to other aircraft systems and other aircraft platforms.
Instead of building tools from scratch that would need to be reworked as the application scales, a set of scalable tools that suit the task at hand and in the future were selected. The full suite of tools, beyond what has been implemented so far, appears to provide capability to address data integrity, reliability and performance as the application grows.
The feasibility of using imperfectly phenotyped "silver standard" samples identified from electronic medical record diagnoses is considered in genetic association studies when these samples might be combined with an existing set of samples phenotyped with a gold standard technique. An analytic expression is derived for the power of a chi-square test of independence using either research-quality case/control samples alone, or augmented with silver standard data. The subset of the parameter space where inclusion of silver standard samples increases statistical power is identified. A case study of dementia subjects identified from electronic medical records from the Electronic Medical Records and Genomics (eMERGE) network, combined with subjects from two studies specifically targeting dementia, verifies these results.
With white blood cell count emerging as an important risk factor for chronic inflammatory diseases, genetic associations of differential leukocyte types, specifically monocyte count, are providing novel candidate genes and pathways to further investigate. Circulating monocytes play a critical role in vascular diseases such as in the formation of atherosclerotic plaque. We performed a joint and ancestry-stratified genome-wide association analyses to identify variants specifically associated with monocyte count in 11 014 subjects in the electronic Medical Records and Genomics Network. In the joint and European ancestry samples, we identified novel associations in the chromosome 16 interferon regulatory factor 8 (IRF8) gene (P-value = 2.78×10(−16), β = −0.22). Other monocyte associations include novel missense variants in the chemokine-binding protein 2 (CCBP2) gene (P-value = 1.88×10(−7), β = 0.30) and a region of replication found in ribophorin I (RPN1) (P-value = 2.63×10(−16), β = −0.23) on chromosome 3. The CCBP2 and RPN1 region is located near GATA binding protein2 gene that has been previously shown to be associated with coronary heart disease. On chromosome 9, we found a novel association in the prostaglandin reductase 1 gene (P-value = 2.29×10(−7), β = 0.16), which is downstream from lysophosphatidic acid receptor 1. This region has previously been shown to be associated with monocyte count. We also replicated monocyte associations of genome-wide significance (P-value = 5.68×10(−17), β = −0.23) at the integrin, alpha 4 gene on chromosome 2. The novel IRF8 results and further replications provide supporting evidence of genetic regions associated with monocyte count.
The Metabochip is a custom genotyping array designed for replication and fine mapping of metabolic, cardiovascular, and anthropometric trait loci and includes low frequency variation content identified from the 1000 Genomes Project. It has 196,725 SNPs concentrated in 257 genomic regions. We evaluated the Metabochip in 5,863 African Americans; 89% of all SNPs passed rigorous quality control with a call rate of 99.9%. Two examples illustrate the value of fine mapping with the Metabochip in African-ancestry populations. At CELSR2/PSRC1/SORT1, we found the strongest associated SNP for LDL-C to be rs12740374 (p = 3.5 × 10(-11)), a SNP indistinguishable from multiple SNPs in European ancestry samples due to high correlation. Its distinct signal supports functional studies elsewhere suggesting a causal role in LDL-C. At CETP we found rs17231520, with risk allele frequency 0.07 in African Americans, to be associated with HDL-C (p = 7.2 × 10(-36)). This variant is very rare in Europeans and not tagged in common GWAS arrays, but was identified as associated with HDL-C in African Americans in a single-gene study. Our results, one narrowing the risk interval and the other revealing an associated variant not found in Europeans, demonstrate the advantages of high-density genotyping of common and rare variation for fine mapping of trait loci in African American samples.
Obesity is a public health concern. Yet the identification of adiposity-related genetic variants among United States (US) Hispanics, which is the largest US minority group, remains largely unknown.To interrogate an a priori list of 47 (32 overall body mass and 15 central adiposity) index single-nucleotide polymorphisms (SNPs) previously studied in individuals of European descent among 3494 US Hispanic women in the Women's Health Initiative SNP Health Association Resource (WHI SHARe).Cross-sectional analysis of measured body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) were inverse normally transformed after adjusting for age, smoking, center and global ancestry. WC and WHR models were also adjusted for BMI. Genotyping was performed using the Affymetrix 6.0 array. In the absence of an a priori selected SNP, a proxy was selected (r(2)0.8 in CEU).Six BMI loci (TMEM18, NUDT3/HMGA1, FAIM2, FTO, MC4R and KCTD15) and two WC/WHR loci (VEGFA and ITPR2-SSPN) were nominally significant (P<0.05) at the index or proxy SNP in the corresponding BMI and WC/WHR models. To account for distinct linkage disequilibrium patterns in Hispanics and further assess generalization of genetic effects at each locus, we interrogated the evidence for association at the 47 surrounding loci within 1 Mb region of the index or proxy SNP. Three additional BMI loci (FANCL, TFAP2B and ETV5) and five WC/WHR loci (DNM3-PIGC, GRB14, ADAMTS9, LY86 and MSRA) displayed Bonferroni-corrected significant associations with BMI and WC/WHR. Conditional analyses of each index SNP (or its proxy) and the most significant SNP within the 1 Mb region supported the possible presence of index-independent signals at each of these eight loci as well as at KCTD15.This study provides evidence for the generalization of nine BMI and seven central adiposity loci in Hispanic women. This study expands the current knowledge of common adiposity-related genetic loci to Hispanic women.