Abstract Large-scale landslides often cause severe damage due to their long run-out distances and having disaster chain effects. Scenario simulation has been adopted in the current work to analyze the Xiaomojiu landslide dynamic processes, such as sliding velocity, deposition characteristics, and flood outburst after a landslide-dam failure using Particle Flow Code (PFC-3D) which introduced the changeable friction coefficient and the HEC-RAS software. The landslide characteristics and topography data were obtained via field investigation, whereas high-resolution topographic data (0.17 m) was obtained using an Unmanned Aerial Vehicle (UAV). The results showed that: 1. The landslide presents a scallop shape with a length of 1566 m, a width ranging from 809~1124 m, and an area of 1.34×10 6 m 2 . The average thickness and volume of the sliding body is approximately 40 m, 5.1×10 7 m 3 . The InSAR deformation analysis showed that the Xiaomojiu landslide has a maximum annual displacement rate of 60 mm/y, and a maximum accumulation deformation of 180 mm since November 25, 2017. 2. From the landslide simulation results, the failure process of the Xiaomojiu landslide lasted for 65 s with a maximum velocity of 78.2 m/s. The deposited area is approximately 2023 m long, 900 m wide, with a maximum height of approximately 149 m. 3. After the landslide blocks the Jinsha River, a landslide-dammed lake with an elevation of 2940 m and a storage capacity of 4.13×109 m 3 is formed. The maximum peak flow rate of the breach is 12051.7 m 3 /s, 43451.4 m 3 /s, 148635.6 m 3 /s, and 304544.7 m 3 /s for the landslide-dammed failure degrees of 15%, 25%, 50%, and 75%, respectively. These results provide a scientific reference for the risk analysis and mitigation of the landslide.
The problems of gully and soil erosion caused by large-scale urban construction and agricultural development in China have become more and more serious in recent years. In an effort to solve this problem, a series of gully stabilization and highland protection projects have been carried out on the Loess Plateau, and this has resulted in a large number of high-loess-filled-slopes (HLFSs). Although these filled slopes uses several different mitigation measures, the HLFSs have been eroded and destroyed under the action of water. In order to study the influence of different mitigation measures on the stability of HLFSs and their failure process, this paper uses a flume test of the effects of various mitigation measures on this failure process. The results show that: (1) the failure processes of slopes with different mitigation measures are obviously different. Slope deformation u with a declining gradient mitigation mainly occurs on the surface of the slope body, and although slope erosion is quite serious, the slope does not fail as a whole. Slopes with a stepwise drainage channel mitigation show little erosion, but material can easily slide along the horizontal drainage channels. (2) The slope deformation process is correlated with changes in pore-water pressure. When local instability occurs, there is always a pre-process of continuously rising pore-water pressure. When a failure occurs, the pore-water pressure of the soil at each position of the slope body suddenly fluctuates under instantaneous excitation. (3) The response of soil pore pressure and the development characteristics of tension cracks affect the deformation of the slopes, which is also the cause of the differences slope instability caused by different mitigation measures. These research results provide reference for the protection of HLFS engineering projects from heavy rains.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.