Abstract In recent years, the development and application of plant proteins have drawn increasing scientific and industrial interests. Pea ( Pisum sativum L.) is an important source of high‐quality vegetable protein in the human diet. Its protein components are generally considered hypoallergenic, and many studies have highlighted the health benefits associated with the consumption of pea protein. Pea protein and its hydrolysates (pea protein hydrolysates [PPH]) possess health benefits such as antioxidant, antihypertensive, and modulating intestinal bacteria activities, as well as various functional properties, including solubility, water‐ and oil‐holding capacities, and emulsifying, foaming, and gelling properties. However, the application of pea protein in the food system is limited due to its poor functional performances. Several frequently applied modification methods, including physical, chemical, enzymatic, and combined treatments, have been used for pea protein to improve its functional properties and expand its food applications. To date, different applications of pea protein in the food system have been extensively studied, for example, encapsulation for bioactive ingredients, edible films, extruded products and substitution for cereal flours, fats, and animal proteins. This article reviews the current status of the knowledge regarding pea protein, focusing on its health benefits, functional properties, and structural modifications, and comprehensively summarizes its potential applications in the food industry.
The maintenance of the intestinal barrier is crucial for the overall balance of the gut and the organism. Dysfunction of the intestinal barrier is closely associated with intestinal diseases. In recent years, due to the increased presence of nanoparticles (NPs) in the human diet, there has been a growing concern regarding the safety and potential impact of these NPs on gastrointestinal health. The interactions between food-derived NPs and the intestinal barrier are numerous. This review provides an introduction to the structure and function of the intestinal barrier along with a comprehensive summary of the interactions between food NPs and the intestinal barrier. Additionally, we highlight the potential connection between the food NPs-induced dysfunction of the intestinal barrier and inflammatory bowel disease. Finally, we discuss the enhancement of food NPs on the repair of the intestinal barrier damage and the nutrients absorption. This review holds significant importance in furthering our understanding of the regulatory mechanisms of food-derived NPs on the intestinal barrier.