We have investigated the use of a novel smart steamflood pattern in San Ardo field, California to minimize steam override and thus enhance oil production and reduce steam injection costs. The smart steamflood pattern consists of a vertical injector placed at the center of the pattern and a smart horizontal producer placed on each of two (parallel) sides of the pattern. The horizontal section of the producer is fully open initially, but after steam breakthrough only one-third (heel-end) is kept open.Using an 8-component thermal compositional model, we compared the performance of the smart steamflood pattern (under steam- and steam-propane injection) against the conventional 9-spot inverted pattern in the Lombardi reservoir, San Ardo field. A 16×16×20 Cartesian model was used to represent one-quarter of the typical 10-acre pattern in the field. Main results of our investigation are as follows.First, under steam injection at 1200 BPDCWE, oil recovery after eight years is significantly higher with the smart steamflood pattern (61% OOIP) compared to that with the conventional steamflood pattern (51% OOIP). Second, when steamflooding follows cyclic steam injection, the smart steamflood pattern recovers 53% OOIP in eight years compared to 46% OOIP with the conventional pattern. Lastly, steam-propane injection accelerates the first oil production peak by 10% and the second by 24% when compared with pure steam injection using the smart steamflood pattern.
In‐stream surface storage zones (SSZs) caused by lateral recirculation areas play a significant role in the transport and fate of contaminants in rivers. Lateral recirculating areas have long residence times that favor nutrient uptake, accumulation of pollutants, and interactions with reactive sediments. In watersheds affected by acid‐mine drainage, SSZs have profound effects on biogeochemical processes, controlling the local concentration and distribution of toxic elements along the channel. Despite the importance of turbulent flow dynamics on these processes, limited work has been carried out to analyze mass transport in natural SSZs with complex geometries. In this investigation we study a SSZ in the Lluta River, located in a high‐altitude environment in northern Chile, by coupling field measurements and 3‐D numerical simulations to understand the transport mechanisms with the main channel. We measure the velocity field using an acoustic Doppler velocimeter (ADV) and large‐scale particle image velocimetry (LSPIV), extracting the bathymetry from digital image processing. Using these data, we perform detached‐eddy simulations (DES) to analyze the mean flow, turbulence statistics, and the dynamics of large‐scale coherent structures. From this detailed description of the turbulent flow, we study the mass exchange and the time evolution of the mean concentration of a passive scalar in the SSZ by testing three upscaled models: a classical linear transport model, a two‐storage formulation, and a fractional transport model. The analysis integrates temporal and spatial scales to provide a new perspective on the turbulent flow in SSZs and their effects on global mass transport in rivers.
The southern sector of the Llanos Basin in Colombia has been identified as a basin where the hydrodynamic flow has influenced the potential of hydrocarbon storage and production. In this area the hydrodynamic flow coincides with a province of heavy and extra-heavy crude oils, which has hypothesized for this area, a critical condition that decreases the potential for hydrocarbon retention by the effect of hydrodynamic flow and the geochemical nature of the fluids. This work provide a comprehensive view to describe the impact of regional hydrodynamic flow on retention of the heavy oil accumulations present in the reservoirs that are part of the most important regional flow unit identified in the Southern Llanos Basin. The Basal Flow Unit (BFU) constitutes a basin-scale flow unit that hydraulically and laterally connects rocks from the Cretaceous (west) to the Oligocene (east) and extends from the basin's southwestern margin up to hundreds of kilometers within the Llanos foreland basin, and whose main water recharge zone has been identified towards the eastern flank of the Serranía de la Macarena. To understand the impact of the physicochemical properties of the fluids, we analyze the relationship between hydraulic data and the main characteristics of the fluids present in the BFU, and their spatial distribution on the present-day configuration of this flow unit. This analysis integrated information from hydraulic heads, SARA analysis (Saturates, Aromatics, Resins, and Asphaltenes), Whole Oil Gas Chromatography analysis, API-gravity, and oil densities. In addition, hydrochemical analysis of the primary ions was performed in groundwater samples from the BFU, which was integrated with deep resistivity data measured in producing and exploratory oil wells in the area. The results allowed identifying the southwestern corner of the southern Llanos Basin as the area with the highest hydrodynamic flow impact, and therefore, the area with the least potential for hydrocarbon retention, attributing as the main causes: 1) the proximity to recharge areas, and 2) the low contrast of fluids densities (freshwaters and highly biodegraded heavy crude oils), implying high Tilt Amplification Factor (TAF) values. Furthermore, gradual changes in resistivities and ions concentration in groundwaters suggest the eastern flank of the Serranía de la Macarena as the main recharge zone of meteoric waters into the BFU. Finally, numerical simulation techniques were used to analyze the behavior of hydrocarbon drainage under hydrodynamic conditions, obtaining a first approximation to the average linear groundwater flow velocities between 10 -3 and 10 -4 ft/day.
The topographic and structural configuration of the deformation front in foreland basins has implications in the process of hydrologic recharge of deep aquifer systems. Deep aquifer systems are favored when tectonic deformation has exhumed aquifer units to the surface, creating a connection between the surface and subsurface. The indirect water recharge processes established by this connection allows meteoric water to infiltrate and travel long distances through a basin. Therefore, establishing recharge zones and determining the influence of meteoric waters in deep aquifers represents a challenge to understand the dynamics and hydraulic potential of this type of system. This study presents new oxygen and hydrogen isotopic data from 162 samples of surface water and 109 samples from groundwater. Groundwater samples were taken from deep wells (700 m to 4000 m deep) that penetrated the aquifer units that make up the Basal Flow Unit present in the southern Llanos basin in Colombia. In addition, anion and cation analysis (HCO3, CO3, SO4, Cl, Na, K, Ca, Mg) was performed on 67 surface water samples and 93 groundwater samples from wells to evaluate their composition and existing relationship with the recharge areas. We use this data to establish the isotopic behavior of the Andean Foreland in Colombia and predict the altitude ranges of the recharge zones for a deep regional aquifer that extends along the southern Llanos basin in Colombia.
In this work, the turbulent flow dynamics and mass transport mechanisms in a natural SSZis analyzed. The study site is a river reach of the Lluta River, located in northern Chile in a high-altitude Andean environment known as the Altiplano (~ 4,000 masl) The large-scale turbulent coherent structures are characterized using field measurements and 3D numerical simulations. The detailed topography was measured through DGPS and digital image processing while the surface velocity field, through the LSPIV technique. Regarding the field data, numerical simulations were performed using a DES turbulence model coupled with a 3D passive scalar transport model for Re = 45,800. The coherent structure dynamics in the shear layer was identified as the main mechanism that drives the mass and momentum transport processes between the SSZ and the main channel. Also, the 2D vortical structures of the mean flow are analyzed within the lateral cavity, since they have a strong influence in mass transport, increasing mean residence times due to their lower velocities and longer exchange timescales. Finally, the performance of two simplified transport models is analyzed to represent the mass transport dynamics at larger scales.
Importance Most epidemiological studies of heart failure (HF) have been conducted in high-income countries with limited comparable data from middle- or low-income countries. Objective To examine differences in HF etiology, treatment, and outcomes between groups of countries at different levels of economic development. Design, Setting, and Participants Multinational HF registry of 23 341 participants in 40 high-income, upper–middle-income, lower–middle-income, and low-income countries, followed up for a median period of 2.0 years. Main Outcomes and Measures HF cause, HF medication use, hospitalization, and death. Results Mean (SD) age of participants was 63.1 (14.9) years, and 9119 (39.1%) were female. The most common cause of HF was ischemic heart disease (38.1%) followed by hypertension (20.2%). The proportion of participants with HF with reduced ejection fraction taking the combination of a β-blocker, renin-angiotensin system inhibitor, and mineralocorticoid receptor antagonist was highest in upper–middle-income (61.9%) and high-income countries (51.1%), and it was lowest in low-income (45.7%) and lower–middle-income countries (39.5%) ( P < .001). The age- and sex- standardized mortality rate per 100 person-years was lowest in high-income countries (7.8 [95% CI, 7.5-8.2]), 9.3 (95% CI, 8.8-9.9) in upper–middle-income countries, 15.7 (95% CI, 15.0-16.4) in lower–middle-income countries, and it was highest in low-income countries (19.1 [95% CI, 17.6-20.7]). Hospitalization rates were more frequent than death rates in high-income countries (ratio = 3.8) and in upper–middle-income countries (ratio = 2.4), similar in lower–middle-income countries (ratio = 1.1), and less frequent in low-income countries (ratio = 0.6). The 30-day case-fatality rate after first hospital admission was lowest in high-income countries (6.7%), followed by upper–middle-income countries (9.7%), then lower–middle-income countries (21.1%), and highest in low-income countries (31.6%). The proportional risk of death within 30 days of a first hospital admission was 3- to 5-fold higher in lower–middle-income countries and low-income countries compared with high-income countries after adjusting for patient characteristics and use of long-term HF therapies. Conclusions and Relevance This study of HF patients from 40 different countries and derived from 4 different economic levels demonstrated differences in HF etiologies, management, and outcomes. These data may be useful in planning approaches to improve HF prevention and treatment globally.