The occurrence of heat-shock proteins (HSPs) in response to high temperature stress is a universal phenomenon in higher plants and has been well documented. However, in agriculturally important species, less is known about the expression of HSPs under natural environments. A review of the heat-shock response in wheat (Triticum aestivum L.) is presented and recent results on the expression of wheat HSPs under diurnal stress and field conditions are reported. In the field experiment, flag leaf blade temperatures were obtained and leaf blades collected for northern blot analysis using HSP 16.9 cDNA as a probe. Temperatures of leaf blades ranged from 32 to 35�C under the tested field conditions at New Deal near Lubbock, Texas. Messenger RNAs encoding a major class of low molecular weight HSPs, HSP 16.9, were detected in all wheat genotypes examined. The results suggested that HSPs are synthesised in response to heat stress under agricultural production, and furthermore, that HSPs are produced in wheats differing in geographic background. In the controlled growth chamber experiment, HSP expression in two wheat cultivars, Mustang (heat tolerant) and Sturdy (heat susceptible) were analysed to determine if wheat genotypes differing in heat tolerance differ in in vitro HSP synthesis (translatable HSP mRNAs) under a chronic, diurnal heat-stress regime. Leaf tissues were collected from seedlings over a time-course and poly (A)+RNAs were isolated for in vitro translation and 2-D gel electrophoresis. The protein profiles shown in the 2-D gel analysis revealed that there were not only quantitative differences of individual HSPs between these two wheat lines, but also some unique HSPs which were only found in the heat tolerant line. This data provides evidence of a correlation between HSP synthesis and heat tolerance in wheat under a simulated field environment and suggests that further genetic analysis of HSPs in a segregating population is worthy of investigation. In conclusion, the results of this study provide an impetus for the investigation of the roles of HSP genes in heat tolerance in wheat.
The leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4, also called GPR48) plays a key role in multiple developmental processes, and mice lacking Lgr4 display anterior segment dysgenesis leading to early-onset glaucomatous retinal ganglion cell loss as well as defective eyelid formation. This paper will review Lgr4 signaling and its regulation of the Axenfeld-Rieger syndrome gene Pitx2 , a crucial developmental transcription factor. In addition, Wnt signaling plays an important role in eye development, with Norrin functioning to activate the Wnt receptor Frizzled 4 required for proper retinal vascularization. Recent discoveries identifying Lgr4 as a receptor for Norrin highlight the potential for Lgr4 function in retinal vascularization. Finally, several unanswered questions impeding a full understanding of Lgr4 in glaucoma are considered as avenues for further research.
The development of the anterior segment of the mammalian eye is critical for normal ocular function, whereas abnormal development can cause glaucoma, a leading cause of blindness in the world. We report that orphan G protein-coupled receptor 48 (Gpr48/LGR4) plays an important role in the development of the anterior segment structure. Disruption of Gpr48 causes a wide spectrum of anterior segment dysgenesis (ASD), including microphthalmia, iris hypoplasia, irdiocorneal angle malformation, cornea dysgenesis, and cataract. Detailed analyses reveal that defective iris myogenesis and ocular extracellular matrix homeostasis are detected at early postnatal stages of eye development, whereas ganglion cell loss, inner nuclear layer thinness, and early onset of glaucoma were detected in 6-month-old Gpr48(-/-) mice. To determine the molecular mechanism of ASD caused by the deletion of Gpr48, we performed gene expression analyses and revealed dramatic down-regulation of Pitx2 in homozygous knockout mice. In vitro studies with the constitutively active Gpr48 mutant receptor demonstrate that Pitx2 is a direct target of the Gpr48-mediated cAMP-CREB signaling pathway in regulating anterior segment development, suggesting a role of Gpr48 as a potential therapeutic target of ASD.
Prostate-specific G-protein-coupled receptor (PSGR), a member of the olfactory subfamily of G-protein-coupled receptors, is specifically expressed in human prostate tissue and overexpressed in prostate cancer (PCa). This expression pattern suggests a possible role in PCa initiation and progression. We developed a PSGR transgenic mouse model driven by a probasin promoter and investigated the role of PSGR in prostate malignancy. Overexpression of PSGR induced a chronic inflammatory response that ultimately gave rise to premalignant mouse prostate intraepithelial neoplasia lesions in later stages of life. PSGR-overexpressing LnCaP cells in prostate xenografts formed larger tumors compared with normal LnCaP cancer cells, suggesting a role of PSGR in the promotion of tumor development. Furthermore, we identified nuclear factor-κB (NF-κB) or RELA as a key downstream target activated by PSGR signaling. We also show that this regulation was mediated in part by the phosphatidylinositol-3-kinase/Akt (PI3K/AKT) pathway, highlighting a collaborative role between PI3K/AKT and NF-κB during tumor inflammation downstream of PSGR in the initial phases of prostate disease.Oncogenesis (2014) 3, e114; doi:10.1038/oncsis.2014.29; published online 11 August 2014.
<p>Gating strategy used to determine PR1-CTL frequency in peripheral blood of multiple myeloma patients following allogenic stem cell transplantation</p>