Robotic-assisted surgery has been fully embraced by surgeons for the adult population; however, its acceptance is too slow in the world of pediatric surgeons. It is largely due to the technical limitations and the inherent high cost associated with it. In the past two decades, indeed, there has been considerable advancement in pediatric robotic surgery. A large number of surgical procedures were performed on children with the assistance of robots, even with comparative success rates to standard laparoscopy. As a newly developing field, it still has many challenges and obstacles. This work is centered on the current status and progression of pediatric robotic surgery as well as the future perspectives in the field of pediatric surgery.
Experiments were conducted in intact and adrenalectomized female Wistar rats given dexamethasone, deoxycorticosterone or both, and atria total RNA was extracted with cold phenol method and hybridized to rat ANP-cDNA probe labeled with alpha-32P. The ANP gene transcripts in intact rats receiving dexamethasone and in adrenalectomized rats receiving dexamethasone and deoxycorticosterone increased by 2-fold, while there were no significant changes in the other groups. The results suggest that glucocorticoids enhance ANP gene expression, an effect relying on the presence of mineralocorticoids which given alone does not give rise to ANP gene expression enhancement.
Tau proteins aggregate as cytoplasmic inclusions in a number of neurodegenerative diseases, including Alzheimer's disease and hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Over 10 exonic and intronic mutations in the tau gene have been identified in about 20 FTDP-17 families. Analyses of soluble and insoluble tau proteins from brains of FTDP-17 patients indicated that different pathogenic mutations differentially altered distinct biochemical properties and stoichiometry of brain tau isoforms. Functional assays of recombinant tau proteins with different FTDP-17 missense mutations implicated all but one of these mutations in disease pathogenesis by reducing the ability of tau to bind microtubules and promote microtubule assembly.
// Xuan Xiang 1, * , Hong Mei 1, * , Xiang Zhao 1, * , Jiarui Pu 1 , Dan Li 1 , Hongxia Qu 1 , Wanju Jiao 2 , Jihe Zhao 3 , Kai Huang 4 , Liduan Zheng 2, 4 , Qiangsong Tong 1, 4 1 Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China 2 Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China 3 Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA 4 Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China * These authors have contributed equally to this work Correspondence to: Qiangsong Tong, e-mail: qs_tong@hotmail.com Liduan Zheng, e-mail: ld_zheng@hotmail.com Keywords: neuroblastoma, microRNA-337-3p, matrix metalloproteinase 14, transcriptional repression Received: February 18, 2015 Accepted: June 03, 2015 Published: June 15, 2015 ABSTRACT Recent evidence shows the emerging roles of endogenous microRNAs (miRNAs) in repressing gene transcription. However, the miRNAs inhibiting the transcription of matrix metalloproteinase 14 ( MMP-14 ), a membrane-anchored MMP crucial for the tumorigenesis and aggressiveness, still remain largely unknown. In this study, through mining computational algorithm program and genome-wide Argonaute profiling dataset, we identified one binding site of miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that miR-337-3p was under-expressed and inversely correlated with MMP-14 expression in clinical specimens and cell lines of neuroblastoma (NB), the most common extracranial solid tumor in childhood. Patients with high miR-337-3p expression had greater survival probability. miR-337-3p suppressed the promoter activity, nascent transcription, and expression of MMP-14 , resulting in decreased levels of vascular endothelial growth factor, in cultured NB cell lines. Mechanistically, miR-337-3p recognized its binding site and recruited Argonaute 2 to facilitate the enrichment of repressive epigenetic markers and decrease the binding of RNA polymerase II and specificity protein 1 on the MMP-14 promoter. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo . In addition, restoration of MMP-14 expression rescued the NB cells from changes in these biological features. Taken together, these data indicate that miR-337-3p directly binds the MMP-14 promoter to repress its transcription, thus suppressing the progression of NB.
Radiation-induced lung injury has restricted radiotherapy for thoracic cancer. The purpose of this study was to investigate the radioprotective effects of bromodomain and extra terminal (BET) inhibitor JQ1 in a murine model of pulmonary damage. Chest computed tomography (CT) was performed in a rat model after 20 Gy radiation of the right thorax. And histological evaluation and protein expressions of irradiated tissue were analyzed to confirm the potential anti-fibrosis effect of JQ1 and its underlying mechanisms. Moreover, colony formation assays were used to explore the effects of JQ1 on esophageal cancer Eca109 and breast cancer MCF7. JQ1 attenuated radiologic and histologic presentations of radiation-induced fibrosis, inflammatory reaction and pulmonary structural changes and the increase of Hounsfield units (HU) density and hydroxyproline content after radiation. Additionally, JQ1 suppressed BRD4, c-MYC, Collagen I, TGF-β, p-NF-κB p65, p-Smad2 and p-Smad3 expressions after irradiation, repressed proliferation and transdifferentiation of lung fibroblasts, and impaired clonogenic survival of thoracic cancer cells. Collectively, our study demonstrated for the first time that BET Bromodomain inhibitor JQ1 protected normal lung tissue after radiation, and exerted a radiosensitizing effect in thoracic cancer cells.
Matrix metalloproteinase 14 (MMP-14), a membrane-anchored MMP that promotes the tumorigenesis and aggressiveness, is highly expressed in gastric cancer. However, the transcriptional regulators of MMP-14 expression in gastric cancer still remain largely unknown. In this study, through mining computational algorithm programs and chromatin immunoprecipitation datasets, we identified adjacent binding sites of myeloid zinc finger 1 (MZF1) and miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that MZF1 directly bound to the MMP-14 promoter to facilitate its nascent transcription and expression in gastric cancer cell lines. In contrast, endogenous miR-337-3p suppressed the MMP-14 expression through recognizing its binding site within MMP-14 promoter. Mechanistically, miR-337-3p repressed the binding of MZF1 to MMP-14 promoter via recruiting Argonaute 2 and inducing repressive chromatin remodeling. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of gastric cancer cells in vitro and in vivo through repressing MZF1-facilitated MMP-14 expression. In clinical specimens and cell lines of gastric cancer, MZF1 was highly expressed and positively correlated with MMP-14 expression. Meanwhile, miR-337-3p was under-expressed and inversely correlated with MMP-14 levels. miR-337-3p was an independent prognostic factor for favorable outcome of gastric cancer, and patients with high MZF1 or MMP-14 expression had lower survival probability. Taken together, these data indicate that miR-337-3p directly binds to the MMP-14 promoter to repress MZF1-facilitatd MMP-14 expression, thus suppressing the progression of gastric cancer.