Abstract Wearable and portable electronics have brought great convenience. These battery‐powered commercial devices have a limited lifetime and require recharging, which makes more extensive applications challenging. Here, a battery‐like self‐charge universal module (SUM) is developed, which is able to efficiently convert mechanical energy into electrical energy and store it in one device. An integrated SUM consists of a power management unit and an energy harvesting unit. Compared to other mechanical energy harvesting devices, SUM is more ingenious, efficient and can be universally used as a battery. Under low frequency (5 Hz), a SUM can deliver an excellent normalized output power of 2 mW g −1 . After carrying several SUMs and jogging for 10 min, a commercial global positioning system module is powered and works continuously for 0.5 h. SUMs can be easily assembled into different packages for powering various commercial electronics, demonstrating the great application prospects of SUM as a sustainable battery‐like device for wearable and portable electronics.
Controlling oxygen deficiencies is essential for the development of novel chemical and physical properties such as high-Tc superconductivity and low-dimensional magnetic phenomena. Among reduction methods, topochemical reactions using metal hydrides (e.g., CaH2) are known as the most powerful method to obtain highly reduced oxides including Nd0.8Sr0.2NiO2 superconductor, though there are some limitations such as competition with oxyhydrides. Here we demonstrate that electrochemical protonation combined with thermal dehydration can yield highly reduced oxides: SrCoO2.5 thin films are converted to SrCoO2 by dehydration of HSrCoO2.5 at 350 °C. SrCoO2 forms square (or four-legged) spin tubes composed of tetrahedra, in contrast to the conventional infinite-layer structure. Detailed analyses suggest the importance of the destabilization of the SrCoO2.5 precursor by electrochemical protonation that can greatly alter reaction energy landscape and its gradual dehydration (H1–xSrCoO2.5–x/2) for the SrCoO2 formation. Given the applicability of electrochemical protonation to a variety of transition metal oxides, this simple process widens possibilities to explore novel functional oxides.
In this study, an intelligent drug delivery system (DDS) based on implanted triboelectric nanogenerator (iTENG) and red blood cell (RBC) is established for in situ hepatocellular carcinoma (HCC) therapy. Apatinib (APA), as an oral antitumor drug, which can inhibit the expression of vascular endothelial growth factor receptor-2 (VEGFR2) is loaded inside RBC, realizing the transform from oral formulation to injection preparation. Multishape designed iTENG adapted for different implant sites and environments can harvest biomechanical energy efficiently. The electric field (EF) generated by the iTENG can increase the release of APA, and the release will decrease quickly when the EF disappears, which shows that the DDS is highly controllable. The controllable DDS demonstrates an exciting killing ability of HCC cells both in vitro and in vivo with strikingly reduced APA dosage. After implantation, the self-powered DDS has a prominent therapeutic effect of HCC-bearing rabbits, which is expected to be applied in clinical medicine.
We prepared polyoxomolybdates with methylammonium countercations from methylammonium monomolybdate, (CH3NH3)2[MoO4], through two dehydrative condensation methods, acidifying in the aqueous solution and solid-state heating. Discrete (CH3NH3)10[Mo36O112(OH)2(H2O)14], polymeric ((CH3NH3)8[Mo36O112(H2O)14])n, and polymeric ((CH3NH3)4[γ-Mo8O26])n were selectively isolated via pH control of the aqueous (CH3NH3)2[MoO4] solution. The H2SO4-acidified solution of pH < 1 produced "sulfonated α-MoO3", polymeric ((CH3NH3)2[(MoO3)3(SO4)])n. The solid-state heating of (CH3NH3)2[MoO4] in air released methylamine and water to produce several methylammonium polyoxomolybdates in the sequence of discrete (CH3NH3)8[Mo7O24–MoO4], discrete (CH3NH3)6[Mo7O24], discrete (CH3NH3)8[Mo10O34], and polymeric ((CH3NH3)4[γ-Mo8O26])n, before their transformation into molybdenum oxides such as hexagonal-MoO3 and α-MoO3. Notably, some of their polyoxomolybdate structures were different from polyoxomolybdates produced from ammonium molybdates, such as (NH4)2[MoO4] or (NH4)6[Mo7O24], indicating that countercation affected the polyoxomolybdate structure. Moreover, among the tested polyoxomolybdates, (CH3NH3)6[Mo7O24] was the best negative staining reagent for the observation of the SARS-CoV-2 virus using transmission electron microscopy.
Analyzing multiple networks is important to understand relevant features among different networks. Although many studies have been conducted for that purpose, not much attention has been paid to the analysis of attractors (i.e., steady states) in multiple networks. Therefore, we study common attractors and similar attractors in multiple networks to uncover hidden similarities and differences among networks using Boolean networks (BNs), where BNs have been used as a mathematical model of genetic networks and neural networks. We define three problems on detecting common attractors and similar attractors, and theoretically analyze the expected number of such objects for random BNs, where we assume that given networks have the same set of nodes (i.e., genes). We also present four methods for solving these problems. Computational experiments on randomly generated BNs are performed to demonstrate the efficiency of our proposed methods. In addition, experiments on a practical biological system, a BN model of the TGF- β signaling pathway, are performed. The result suggests that common attractors and similar attractors are useful for exploring tumor heterogeneity and homogeneity in eight cancers.
Abstract Topochemical reactions have led to great progress in the discovery of new metastable compounds with novel chemical and physical properties. With these reactions, the overall crystal structure of the host material is generally maintained. Here we report a topochemical synthesis of a hexagonal nitride hydride, h ‐Ca 3 CrN 3 H, by heating an orthorhombic nitride, o ‐Ca 3 CrN 3 , under hydrogen at 673 K, accompanied by a rotational structural transformation. The hydrogen intercalation modifies the Ca−N rock‐salt‐like atomic packing in o ‐Ca 3 CrN 3 to a face‐sharing octahedral chain in h ‐Ca 3 CrN 3 H, mimicking a “hinged tessellation” movement. In addition, the h ‐Ca 3 CrN 3 H exhibited stable ammonia synthesis activity when used as a catalyst.
Inside Back Cover picture shows The carps trying hard to make a successful jump over the Dragon Gate will change into fish‐dragons, which is a legend handed down in China over generations. The back cover picture shows photochemical and electrochemical CO 2 transformations with organic compounds through the utilization of solar energy or electric energy, producing a series of valuable products, including carboxylic acids and hetero‐cyclic compounds. The combined utilization of both clean energy and CO 2 has attracted increasing attention in sustainable development of renewable energy and green chemistry. Recent advances are summarized by He et al. on page 644–659. image