Amorpha fruticosa L. is a Chinese folk medicine and rich in polyphenols. Fifteen known compounds were isolated and identified from the leaves of A. fruticosa L. They are tephrosin (1), 6a,12a-dehydrodeguelin (2), vitexin (3), afrormosin-7-O-β-d-glucopyranoside (4), 2″-O-α-l-rhamnopyranosyl isovitexin (5), rutin (6), chrysoeriol (7), 7-O-methylluteolin (8), trans-p-coumaric acid (9), 2-benzyl-4,6-dihydroxybenzoic acid-4-O-β-d-glucopyranoside (10), formononetin (11), quercetin (12), apigenin (13), β-sitosterol (14), and β-daucosterol (15). Compounds 3, 4, 5, and 7–9 were isolated from A. fruticosa L. for the first time. Cytotoxicity of individual compounds 3–10 and 90% ethanol extract against human cancer cell lines HCT116 and HepG2 were reported. The results suggested that compounds 7 and 8, and the crude extract exhibited inhibitory effects on human cancer cell line HCT116, at concentrations of 100 μg/mL, 5 μg/mL, and 25 μg/mL at <60% of cell viability rate, respectively. In addition, a valid high-performance liquid chromatography diode array detector method was established to quantitatively analyze compounds 1–12 in the leaves of A. fruticosa L., which was harvested at three different stages of maturity from May 20 to August 10, 2014. The results demonstrated that contents were greatly influenced by the maturity. Total amounts of the analytical constituents gradually increased from May 20 to August 10, with the values ranging from 10.86 mg/g to 18.84 mg/g, whereas bioactive compounds 7 and 8 presented the opposite variation trend. The results of this study may provide data for further study and comprehensive utilization of A. fruticosa L. resource.
Forty compounds were isolated and characterized from A. tenuissimum flower. Among them, twelve flavonoids showed higher α-glucosidase inhibition activities in vitro than acarbose, especially kaempferol. The molecular docking results showed that the binding of kaempferol to α-glucosidase (GAA) could reduce the hydrolysis of substrates by GAA and reduce the glucose produced by hydrolysis, thus exhibiting α-glucosidase inhibition activities. The in vivo experiment results showed that flavonoids-rich A. tenuissimum flower could decrease blood glucose and reduce lipid accumulation. The protein expression levels of RAC-alpha serine/threonine-protein kinase (AKT1), peroxisome proliferator activated receptor gamma (PPARG), and prostaglandin G/H synthase 2 (PTGS2) in liver tissue were increased. In addition, the Firmicutes/Bacteroidetes (F/B) ratio was increased, the level of gut probiotics Bifidobacterium was increased, and the levels of Enterobacteriaceae and Staphylococcus were decreased. The carbohydrate metabolism, lipid metabolism, and other pathways related to type 2 diabetes mellitus were activated. This study indicating flavonoids-rich A. tenuissimum flower could improve glycolipid metabolic disorders and inflammation in diabetic mice by modulating the protein expression and gut microbiota.