Optical properties of dichroic dye‐doped nematic liquid crystal (N‐LC) cells with direct lamination reflective polarizer (DLRP) were studied. The dye‐doped N‐LC was switchable between transmitting and absorbing of the light passing through the DLRP. Electro‐optical performances with different cell gap were investigated. It was found that the transmittance decreased and the CR increased with increasing cell gap. When the cell gap was larger than a critical value, the bright transmittance of such cells could be higher than that of two cells with the same LC mixture due to the light enhancement of DLRP. In addition, the dark transmittance was nearly similar to that of double cells with different cell gap thanks to the inherent polarization of DLRP. The results showed that the dye‐doped N‐LC cell with DLRP has a good light tuning performance while thinner thickness of device.
Ferromagnetic metals show great prospects in ultralow-power-consumption spintronic devices, due to their high Curie temperature and robust magnetization. However, there is still a lack of reliable solutions for giant and reversible voltage control of magnetism in ferromagnetic metal films. Here, a novel space-charge approach is proposed which allows for achieving a modulation of 30.3 emu/g under 1.3 V in Co/TiO2 multilayer granular films. The robust endurance with more than 5000 cycles is demonstrated. Similar phenomena exist in Ni/TiO2 and Fe/TiO2 multilayer granular films, which shows its universality. The magnetic change of 107% in Ni/TiO2 underlines its potential in a voltage-driven ON-OFF magnetism. Such giant and reversible voltage control of magnetism can be ascribed to space-charge effect at the ferromagnetic metals/TiO2 interfaces, in which spin-polarized electrons are injected into the ferromagnetic metal layer with the adsorption of lithium-ions on the TiO2 surface. These results open the door for a promising method to modulate the magnetization in ferromagnetic metals, paving the way toward the development of ionic-magnetic-electric coupled applications.
Highly selective adsorption of a polypyrrole/reduced graphene oxide nanocomposite toward Hg2+ results in electrochemically selective detection of Hg2+. This interesting finding is of practical utility compared to the biotechniques and surface functionalization-based methods.
Abstract Background Under the influences of chemotherapy regimens, clinical staging, immunologic expressions and other factors, the survival rates of patients with diffuse large B-cell lymphoma (DLBCL) are different. The accurate prediction of mortality hazards is key to precision medicine, which can help clinicians make optimal therapeutic decisions to extend the survival times of individual patients with DLBCL. Thus, we have developed a predictive model to predict the mortality hazard of DLBCL patients within 2 years of treatment. Methods We evaluated 406 patients with DLBCL and collected 17 variables from each patient. The predictive variables were selected by the Cox model, the logistic model and the random forest algorithm. Five classifiers were chosen as the base models for ensemble learning: the naïve Bayes, logistic regression, random forest, support vector machine and feedforward neural network models. We first calibrated the biased outputs from the five base models by using probability calibration methods (including shape-restricted polynomial regression, Platt scaling and isotonic regression). Then, we aggregated the outputs from the various base models to predict the 2-year mortality of DLBCL patients by using three strategies (stacking, simple averaging and weighted averaging). Finally, we assessed model performance over 300 hold-out tests. Results Gender, stage, IPI, KPS and rituximab were significant factors for predicting the deaths of DLBCL patients within 2 years of treatment. The stacking model that first calibrated the base model by shape-restricted polynomial regression performed best (AUC = 0.820, ECE = 8.983, MCE = 21.265) in all methods. In contrast, the performance of the stacking model without undergoing probability calibration is inferior (AUC = 0.806, ECE = 9.866, MCE = 24.850). In the simple averaging model and weighted averaging model, the prediction error of the ensemble model also decreased with probability calibration. Conclusions Among all the methods compared, the proposed model has the lowest prediction error when predicting the 2-year mortality of DLBCL patients. These promising results may indicate that our modeling strategy of applying probability calibration to ensemble learning is successful.
A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.
Magnetoelectric Coupling In article number 2207353, Chen Ge, Qiang Li, and co-workers propose a space-charge mechanism, through decoupling the transport of ions and electrons, to achieve magnetoelectric coupling in ferromagnetic-metal films. This method combines the advantages of both carrier doping and chemical reaction mechanisms, which allows for an efficient modulation with both large-magnitude and robust endurance.
The time-dependent wave-packet method was employed to calculate the first full-dimensional state-to-state differential cross sections (DCS) for the title reaction with D2O in the ground and the first symmetric (100) and asymmetric stretching (001) excited states. The calculated DCSs for these three initial states are strongly backward peaked at low collision energies. With the increase of collision energy, these DCSs become increasingly broader with the peak position shifting gradually to a smaller angle, consistent with the fact that the title reaction is a direct reaction via an abstraction mechanism. It is found that the (100) and (001) states not only have roughly the same integral cross sections, but also have essentially identical DCS, which are very close to that for the ground state at the same total energy of reaction. The reaction produces a small fraction of OD in the v=1 state, with the population close to the relative reactivity between the ground and vibrationally excited states, therefore confirming the experimental result of Zare et al. and the local mode picture [J. Phys. Chem. 97, 2204 (1993)]. Unexpectedly, the stretching excitation reduces the rotation excitation of product HD at the same total energy.
We report a permutationally invariant global potential energy surface (PES) for the H + CH4 system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (Jtot = 0) including the abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].
In this paper glass frits were prepared by the melting and quenching method. The SrAl2O4:Eu2+,Dy3+ was incorporated in the glass frits by firing them on a glass substrate. The photo luminescence was measured in terms of excitation and emission spectra. Effects of firing temperature on the phosphorescence persistence were measured.