Because of a wide range of Industrial Ethernet and the great difference between them, it is a difficult problem to select which one is proper when designing an automation system. The huge advantages of Industrial Ethernet are discussed, so are the protocol model and technologic characteristics. The usage patterns and the usage percentages of industrial Ethernet are analyzed. Then the performance of industrial Ethernet is compared and evaluated. Especially, this paper presents that after consideration for some factors, such as development expense and complexity, protocol compatibility, market share and etc, the suitable industrial Ethernet protocol can be selected according to the performance demand of the automation systems.
In order to change the actuality of a lot of system resources used up in the pattern matching process of Web information filtering system,fuzzy matching algorithm based on logic was applied in the data pre-processing module of information filtering.Lots of unmatched data packets were matched by hardware circuit,then a small amount of suspected packets were made second matching.It was proved by experiments,the algorithm reduced the burden of system and had the higher matching efficiency.
Recently, researchers focus on Graph-based semi-supervised learning, how to construct a graph and introduce kernel function into semi-supervised learning affect the effect of the algorithm, and mostly.This paper proposed a improved graph-based method and introduce kernel function into semi-supervised learning, the experimental verification algorithm has achieved some results.
Brain damage is one of the main cause of fetal death,disability of children.Whether or not to treat the infants with severe brain damage(including cerebral palsy,mental disability,etc) is involved in many complex viewpoints.The article has analyzed risk factors of brain damage during newborn,given some relevant general disposition suggestions,concluded that solve the problems in hamounious way needs all our efforts of hospitals,families and governments.
Elemental selenium, a new type of selenium supplement, can be biosynthesized via microorganisms. This study is to characterize a patent probiotic bacteria Enterococcus durans A8-1, capable of reducing selenite (Se6+ or Se4+) to elemental selenium (Se0) with the formation of Se nanoparticles (SeNPs).The selenium nanoparticles synthesized from A8-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron energy (XPS). The Caco2 cells were used to investigate the effects of Se-enriched A8-1 on the viability, membrane integrity, and the regulation of cellular inflammation through MTT and ELISA assays. The selenium-enriched metabolic function of A8-1 was analyzed by transcriptome sequencing.E. durans A8-1 has the ability to synthesize intracellular SeNPs that are incubated with 60 mg/L sodium selenite for 18 h at 37 °C with 7 % inoculum under aerobic conditions. The selenium-enriched transformation rate increased to 43.46 %. After selenium enrichment, there were no significant morphological changes in E. durans A8-1 cells. The cells also exhibited no cytotoxicity when incubated with Caco-2 cells, and increased cellular proliferation. Furthermore, Se-enriched A8-1 cells antagonize the adhesion of S. typhimurium ATCC14028 onto the surface of Caco-2 cells protecting cell membrane integrity and was assessed by measuring LDH and AKP activities (P <0.001, P <0.001). Moreover, Se-enriched A8-1 could protect Caco-2 cells from inflammation induced by lipopolysaccharide and help the cells alleviate the inflammation through the reduced expression of cytokine IL-8 (P = 0.0012, P <0.001) and TNF-α (P <0.001, P <0.001). Based on transcriptome sequencing in Se-enriched E. durans A8-1 cells, there were 485 up-regulated genes and 322 down-regulated genes (Padj < 0.05). There were 19 predicted up-regulated genes that are highly related to the potential selenium metabolism pathway, which focuses on the transportation of Na2SeO3 by membrane proteins, and gradually reduces Na2SeO3 to elemental selenium aggregates that are deposited onto the membrane surface via the intracellular redox response.E. durans A8-1 could convert extracellular selenite into intracellular biological SeNPs via redox pathway with strong selenium-rich metabolism, and its biological SeNPs have anti-inflammatory properties, which have the potential for the development of composite selenium nanomaterials and can be further studied for the function of SeNPs with potential applications.
Abstract Targeted at the harmful effects of garment image retrieval at present, a new approach of garment image retrieval featured in satisfactory performance is proposed. In this study, the Grab Cut auto segmentation algorithm is applied first to segment garment images and extract the image’s foreground. And then, the color coherence vector (CCV) and the dominant color method are adopted to extract the color features to conduct garment image retrieval. The experimental data show that the Grab Cut auto segmentation algorithm is capable of extracting the foreground of garment images with either simple or complex background. Meanwhile, the data also indicate that compared with the garment image retrieval by extracting color features using CCV, extracting color features by dominating color method shows both higher accuracy and recall rates.
A patented strain of Bacillus amyloliquefaciens C-1 in our laboratory could produce functional sodium selenite (Na2SeO3) under optimized fermentation conditions. With the strong stress resistance and abundant secondary metabolites, C-1 showed potential to be developed as selenium-enriched postbiotics. C-1 has the ability to synthesize SeNPs when incubated with 100 μg/ml Na2SeO3 for 30 h at 30 °C aerobically with 10% seeds-culture. The transformation rate from Na2SeO3 into SeNPs reached to 55.51%. After selenium enrichment, there were no significant morphology changes in C-1 cells but obvious SeNPs accumulated inside of cells, observed by scanning electron microscope and transmission electron microscope, verified by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. SeNPs had antioxidant activity in radical scavenge of superoxide (O2-), Hydroxyl radical (OH-) and 1,1-diphenyl-2-picryl-hydrazine (DPPH), where scavenging ability of OH- is the highest. Selenium-enriched C-1 had obvious anti-inflammatory effect in protecting integrity of Caco-2 cell membrane destroyed by S. typhimurium; it could preventing inflammatory damage in Caco-2 stressed by 200 μM H2O2 for 4 h, with significantly reduced expression of IL-8 (1.687 vs. 3.487, P = 0.01), IL-1β (1.031 vs. 5.000, P < 0.001), TNF-α (2.677 vs. 9.331, P < 0.001), increased Claudin-1 (0.971 vs. 0.611, P < 0.001) and Occludin (0.750 vs. 0.307, P < 0.001). Transcriptome data analysis showed that there were 381 differential genes in the vegetative growth stage and 1674 differential genes in the sporulation stage of C-1 with and without selenium-enrichment. A total of 22 ABC transporter protein-related genes at vegetative stage and 70 ABC transporter protein-related genes at sporulation stage were founded. Genes encoding MsrA, thiol, glutathione and thioredoxin reduction were significantly up-regulated; genes related to ATP synthase such as atpA and atpD genes showed down-regulated during vegetative stage; the flagellar-related genes (flgG, fliM, fliL, and fliJ) showed down-regulated during sporulation stage. The motility, chemotaxis and colonization ability were weakened along with synthesized SeNPs accumulated intracellular at sporulation stage. B. amyloliquefaciens C-1 could convert extracellular selenite into intracellular SeNPs through the oxidation-reduction pathway, with strong selenium-enriched metabolism. The SeNPs and selenium-enriched cells had potential to be developed as nano-selenium biomaterials and selenium-enriched postbiotics.