In view of the substation fire early warning using a single information sensor monitoring, it is easy to make mistakes and omissions. Taking the cable in substation as the research object, a multi-information fusion fire prediction model based on back propagation neural network (BPNN) and fuzzy set theory is proposed. Firstly, the BPNN model is trained by using the existing data. Secondly, the artificial fish swarm algorithm (AFSA) is used to optimize the BPNN, which speeds up convergence speed of the model and improves the accuracy of prediction. The fuzzy set theory is applied to fuse the predicted fire probability to obtain the optimal fire prevention and control decision. Finally, the fire protection measures are taken according to the fire decision. The experimental show that the average absolute errors of no fire, smoldering and open fire decreased by 26.06%, 38.5% and 43.13% respectively. The model has higher prediction accuracy, can reasonably output different levels of fire alarm signals, establish substation fire warning and prevention and control system, and provide reference for future substation fire and other disasters warning and prevention and control.
Meristems are crucial for organ formation, but our knowledge of their molecular evolution is limited. Here, we show that AINTEGUMENTA (MpANT) in the euANT branch of the APETALA2-like transcription factor family is essential for meristem development in the nonvascular plant Marchantia polymorpha. MpANT is expressed in the thallus meristem. Mpant mutants show defects to maintain meristem identity and undergo meristem duplication, while MpANT overexpressers show ectopic thallus growth. MpANT directly upregulates MpGRAS9 in the SHORT-ROOT (SHR) branch of the GRAS family. In the vascular plant Arabidopsis thaliana, the euANT-branch genes PLETHORAs (AtPLTs) and AtANT are involved in the formation and maintenance of root/shoot apical meristems and lateral organ primordia, and AtPLTs directly target SHR-branch genes. In addition, euANTs bind through a similar DNA-binding motif to many conserved homologous genes in M. polymorpha and A. thaliana. Overall, the euANT pathway has an evolutionarily conserved role in meristem development.
(1) Background: Vegetation is an important component of ecosystems. Investigating the spatio-temporal dynamic changes in vegetation in various Shaanxi Province regions is crucial for the preservation of the local ecological environment and sustainable development. (2) Methods: In this study, the KNDVI vegetation index over the 20-year period from 2003 to 2022 was calculated using MODIS satellite image data that was received from Google Earth Engine (GEE). Sen and MK trend analysis as well as partial correlation analysis were then utilized to examine the patterns in vegetation change in various Shaanxi Province regions. This paper selected meteorological factors, such as potential evapotranspiration (PET), precipitation (PRE), and temperature (TMP); human activity factors, such as land-use type and population density; and terrain factors, such as surface elevation, slope direction, and slope gradient, as the influencing factors for vegetation changes in the research area in order to analyze the driving forces of vegetation spatio-temporal changes. These factors were analyzed using a geo-detector. (3) Results: The vegetation in the research area presented a growth trend from 2003 to 2022, and the area of vegetation improvement was 189,756 km2, accounting for 92.15% of the total area. Among them, the area of significantly improved regions was 174,262 km2, accounting for 84.63% of the total area, and the area of slightly improved regions was 15,495 square kilometers, accounting for 7.52% of the total area. (4) Conclusions: The strengthening of bivariate factors and nonlinear enhancement were the main interaction types affecting vegetation changes. The combination of interaction factors affecting vegetation change in Shaanxi Province includes PRE ∩ PET as well as TMP ∩ PET. Therefore, climate conditions were the main driving force of KNDVI vegetation changes in Shaanxi Province. The data supported by this research are crucial for maintaining the region’s natural ecosystem.
Advanced glycation endproducts (AGEs) have been confirmed to play a causative role in the development of diabetic nephropathy (DN). In this study, we revealed that AGE-induced kidney injury with characteristic patterns in different stages and moesin phosphorylation plays a role in these processes. In WT mice treated with AGE-modified bovine serum albumin (AGE-BSA), distinct abnormal angiogenesis in Bowman's capsule of the kidney emerged early after 1 m under AGE-BSA stimulation, while these neovessels became rare after 6 m. AGE-BSA also induced glomerular hypertrophy and mesangial expansion at 1 m but glomerular atrophy and fibrosis at 6 m. Electron microscopy imaging demonstrated the damage of foot process integrity in podocytes and the uneven thickening of the glomerular basement membrane in the AGE-BSA-treated group, which was more significant after 6 m of AGE-BSA treatment than 1 m. The kidney dysfunction appeared along with these AGE-induced morphological changes. However, these AGE-BSA-induced pathological changes were significantly attenuated in RAGE-knockout mice. Moreover, moesin phosphorylation was accompanied by AGE-BSA-induced alterations and moesin deficiency in mice attenuated by AGE-BSA-induced fibrosis. The investigation on glomerular endothelial cells (GECs) also confirmed that the phosphorylation of moesin T558 is critical in AGE-induced tube formation. Overall, this study suggests that AGEs mediate kidney injury with characteristic patterns by binding with RAGE and inducing moesin phosphorylation.
Abstract The separation of oil, gas, and water mixture is an important process in the production of crude oil. Traditional separation tanks are large, heavy, long in separation time, and high cost to manufacture. This paper introduces a separation technology with the main characteristics of the pipeline structure. This technology uses the principles of centrifugation, expansion, air flotation, and gravity separation. Pipes and other equipment are the core equipment, which has the advantages of flexible process composition, small footprint, and high separation efficiency. This technology can be used for rapid oil, gas, and water separation, solving the problems of expansion, upgrading old oilfield stations, realizing the purpose of re-injection of water in-situ, energy saving, and reducing emissions.