Tissue repair/wound healing, in which angiogenesis plays an important role, is a critical step in many diseases including chronic wound, myocardial infarction, stroke, cancer, and inflammation. Recently, we were the first to report that orphan nuclear receptor TR3/Nur77 is a critical mediator of angiogenesis and its associated microvessel permeability. Tumor growth and angiogenesis induced by VEGF-A, histamine, and serotonin are almost completely inhibited in Nur77 knockout mice. However, it is not known whether TR3/Nur77 plays any roles in wound healing. In these studies, skin wound-healing assay was performed in 3 types of genetically modified mice having various Nur77 activities. We found that ectopic induction of Nur77 in endothelial cells of mice is sufficient to improve skin wound healing. Although skin wound healing in Nur77 knockout mice is comparable to the wild-type control mice, the process is significantly delayed in the EC-Nur77-DN mice, in which a dominant negative Nur77 mutant is inducibly and specifically expressed in mouse endothelial cells. By a loss-of-function assay, we elucidate a novel feed-forward signaling pathway, integrin β4 → PI3K → Akt → FAK, by which TR3 mediates HUVEC migration. Furthermore, TR3/Nur77 regulates the expression of integrin β4 by targeting its promoter activity. In conclusion, expression of TR3/Nur77 improves wound healing by targeting integrin β4. TR3/Nur77 is a potential candidate for proangiogenic therapy. The results further suggest that TR3/Nur77 is required for pathologic angiogenesis but not for developmental/physiologic angiogenesis and that Nur77 and its family members play a redundant role in normal skin wound healing.-Niu, G., Ye, T., Qin, L., Bourbon, P. M., Chang, C., Zhao, S., Li, Y., Zhou, L., Cui, P., Rabinovitz, I., Mercurio, A. M., Zhao, D., Zeng, H. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin b4. FASEB J. 29, 131–140 (2015). www.fasebj.org
Several reports on the association between the BRCC5 gene polymorphism and ovarian cancer risk have been published recently, but the estimates of the risk vary widely. We thus performed a meta-analysis in an effort to determine the association. To identify the eligible studies, we searched the PubMed, Embase, and CNKI databases, and reviewed all original studies retrieved as well as their citations. The risk of ovarian cancer was estimated using odds ratio (OR) and its 95 % confidence interval (CI). Meta-analysis of seven comparisons revealed an obvious rise in the risk of ovarian cancer under the CC vs. GG contrast model (OR = 1.52, 95 % CI = 1.07-2.16, P OR = 0.020). A similar increase was also indicated in the CC vs. GC + GG model (OR = 2.10, 95 % CI = 1.51-2.93, P OR < 0.001). Our meta-analysis indicates that the BRCC5 polymorphism may be a candidate modifier of ovarian cancer risk in Caucasians.
Abstract Background Repeated implantation failure (RIF) leads to a waste of high-quality embryos and remains a challenge in assisted reproductive technology. During early human placentation, the invasion of trophoblast cells into the decidua is an essential step for the establishment of maternal–fetal interactions and subsequent successful pregnancy. Bone morphogenetic protein 2 (BMP2) has been reported to regulate endometrial receptivity and promote trophoblast invasion. However, whether there is dysregulation of endometrial BMP2 expression in patients with RIF remains unknown. Additionally, the molecular mechanisms underlying the effects of BMP2 on human trophoblast invasion and early placentation remain to be further elucidated. Methods Midluteal phase endometrial samples were biopsied from patients with RIF and from routine control in vitro fertilization followed by quantitative polymerase chain reaction and immunoblotting analyses. Human trophoblast organoids, primary human trophoblast cells, and an immortalized trophoblast cell line (HTR8/SVneo) were used as study models. Results We found that BMP2 was aberrantly low in midluteal phase endometrial tissues from patients with RIF. Recombinant human BMP2 treatment upregulated integrin β3 (ITGB3) in a SMAD2/3-SMAD4 signaling-dependent manner in both HTR8/SVneo cells and primary trophoblast cells. siRNA-mediated integrin β3 downregulation reduced both basal and BMP2-upregulated trophoblast invasion and vascular mimicry in HTR8/SVneo cells. Importantly, shRNA-mediated ITGB3 knockdown significantly decreased the formation ability of human trophoblast organoids. Conclusion Our results demonstrate endometrial BMP2 deficiency in patients with RIF. ITGB3 mediates both basal and BMP2-promoted human trophoblast invasion and is essential for early placentation. These findings broaden our knowledge regarding the regulation of early placentation and provide candidate diagnostic and therapeutic targets for RIF clinical management.
Paf (1-o-alkyl-2-acetyl-sn-gylcero-3-phosphocholine) is a putative autocrine survival factor for the preimplantation embryo. It acts to induce receptor-mediated calcium transients in the early embryo. Inhibitors of 1-o-phosphatidylinositol-3-kinase (PI3kinase), such as wortmannin and LY 294002, blocked these calcium transients, implicating the generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in autocrine signal transduction in the early embryo. Perfusion of the embryo cytoplasm with a blocking antibody to PIP3 inhibited paf-induced calcium transients and hyperpolarization of the membrane potential. Furthermore, direct infusion of PIP3 into the embryo induced a nifedipine (10 μmol/L)- and diltiazem (10 μmol/L)-sensitive calcium current in the 2-cell embryo. PIP3 acts as a docking site on membranes for proteins that contain pleckstrin homology domains, such as the thymoma viral proto-oncogene protein (AKT) and phospholipase C gamma. The 2-cell embryo expressed three genes for AKT (Akt 1–3) and two genes for phospholipase C gamma (Plcg1 and Plcg2), and we confirmed the expression of both AKT and phospholipase C gamma 1 by immunolocalization. Paf induced increased accumulation of serine 473-phosphorylated AKT in the region of the plasma membrane, consistent with its recruitment to membrane PIP3. Inhibitors of PI3kinase, such as LY294002, and of AKT, e.g., deguelin and AKT-inhibitor, reduced zygote development in a dose-dependent manner, and this inhibition was partially reversed by the addition of paf to the culture medium. These results provide the first direct evidence that PIP3 and its responsive signaling pathways act in the 2-cell embryo. Since signal transduction via PI3kinase has important roles in governing the cell survival pathways, these results support the hypothesis that autocrine embryotropins, such as paf, act as survival factors.
Activin A increases matrix metalloproteinase (MMP) 2 expression and cell invasion in human trophoblasts, but whether the expression of MMP2 is essential for the proinvasive effect of activin A has yet to be determined. Moreover, the identity of the activin receptor-like kinase (ALK; TGF-β type I receptors) and downstream transcription factors (eg, SNAIL and SLUG) mediating the effects of activin on MMP2 expression and trophoblast cell invasion remains unknown.To elucidate the role of MMP2 in activin A-induced human trophoblast cell invasion as well as the involvement of ALK4 and SNAIL.HTR8/SVneo immortalized human extravillous cytotrophoblast (EVT) cells and primary cultures of human first-trimester EVT cells were used as study models. Small interfering RNA (siRNA)-mediated knockdown approaches were used to investigate the molecular determinants of activin A-mediated functions.Levels of mRNA and protein were examined by reverse transcription-quantitative real-time PCR and Western blot, respectively. Cell invasiveness was measured by Matrigel-coated transwell assays.Treatment of HTR8/SVneo cells with activin A increased the production of SNAIL, SLUG, and MMP2 without altering that of MMP9, TIMP1, TIMP2, TWIST, RUNX2, ZEB1, or ZEB2. Similarly, activin A up-regulated the mRNA and protein levels of SNAIL and MMP2 in primary EVT cells. Knockdown of SNAIL attenuated activin A-induced MMP2 up-regulation in HTR8/SVneo and primary EVT cells. In HTR8/SVneo cells, activin A-induced production of SNAIL and MMP2 was abolished by pretreatment with the TGF-β type I receptor (ALK4/5/7) inhibitor SB431542 or siRNA targeting ALK4, SMAD2/3, or common SMAD4. Likewise, knockdown of ALK4 or SMAD4 abolished the stimulatory effects of activin A on SNAIL and MMP2 expression in primary EVT cells. Importantly, activin A-induced HTR8/SVneo and primary EVT cell invasion were attenuated by siRNA-mediated depletion of ALK4 or MMP2.Activin A induces human trophoblast cell invasion by inducing SNAIL-mediated MMP2 expression through ALK4 in a SMAD2/3-SMAD4-dependent manner.
Objective: The purpose of this article is to discuss on the law of syndrome differentiation and clinical typing through the analysis of various clinic information of patients with peptic ulcer.Method:120 hospitalized peptic ulcer patients in the department of gastroenterology of our hospital from 1995 to 2007 were selected.Statistical analysis of general conditions,symptoms,syndrome differentiation and clinical typing,gastroscopic findings,etc of those 120 cases were carried out.Result:In those patients with peptic ulcer,the highest incidence 50% was the type of heat retention in liver and stomach.The incidence of red tongue and yellow tongue coating was 79%,which played the most important rule in diagnosing the type of heat retention in liver and stomach.The incidences of burning heat in gastric cavity,dry mouth,bitter taste of mouth,acid regurgitation were also high,which had directive significances for the diagnosis of the type of heat retention in liver and stomach.Conclusion:Heat retention in liver and stomach is the major pathogenesis and major type of syndrome during the active stage of peptic ulcer.
Benign prostatic hyperplasia (BPH) is a common disease among aging males with the etiology remaining unclear. We recently found myosin II was abundantly expressed in rat and cultured human prostate cells with permissive roles in the dynamic and static components. The present study aimed to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in the hyperplastic prostate. Human prostate cell lines and tissues from normal human and BPH patients were used. Hematoxylin and Eosin (H&E), Masson's trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. We further created cell models with NMM II isoforms silenced and proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Hyperplastic prostate SM expressed more SM1 and LC17b isoforms compared with their alternatively spliced counterparts, favoring a slower more tonic-type contraction and greater force generation. For BPH group, blebbistatin (BLEB, a selective myosin II inhibitor), exhibited a stronger effect on relaxing phenylephrine (PE) pre-contracted prostate strips and inhibiting PE-induced contraction. Additionally, NMMHC-A and NMMHC-B were up-regulated in hyperplastic prostate with no change in NMMHC-C. Knockdown of NMMHC-A or NMMHC-B inhibited prostate cell proliferation and induced apoptosis, with no changes in cell cycle. Our novel data demonstrate that expression and functional activities of myosin II isoforms are altered in human hyperplastic prostate, suggesting a new pathological mechanism for BPH. Thus, the myosin II system may provide potential new therapeutic targets for BPH/lower urinary tract symptoms (LUTS).
Severe sepsis involves massive activation of the innate immune system and leads to high mortality. Previous studies have demonstrated that various types of TLRs mediate a systemic inflammatory response and contribute to organ injury and mortality in animal models of severe sepsis. However, the downstream mechanisms responsible for TLR-mediated septic injury are poorly understood. In this article, we show that activation of TLR2, TLR3, and TLR4 markedly enhanced complement factor B (cfB) synthesis and release by macrophages and cardiac cells. Polymicrobial sepsis, created by cecal ligation and puncture in a mouse model, augmented cfB levels in the serum, peritoneal cavity, and major organs including the kidney and heart. Cecal ligation and puncture also led to the alternative pathway activation, C3 fragment deposition in the kidney and heart, and cfB-dependent C3dg elevation. Bacteria isolated from septic mice activated the serum alternative pathway via a factor D-dependent manner. MyD88 deletion attenuated cfB/C3 upregulation as well as cleavage induced by polymicrobial infection. Importantly, during sepsis, absence of cfB conferred a protective effect with improved survival and cardiac function and markedly attenuated acute kidney injury. cfB deletion also led to increased neutrophil migratory function during the early phase of sepsis, decreased local and systemic bacterial load, attenuated cytokine production, and reduced neutrophil reactive oxygen species production. Together, our data indicate that cfB acts as a downstream effector of TLR signaling and plays a critical role in the pathogenesis of severe bacterial sepsis.