To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections.
The objective of the study is to investigate potential citrullinated autoantigens as targets of anti-citrullinated protein antibodies (ACPAs) response in synovial fluids (SFs) of patients with rheumatoid arthritis (RA). SFs from six RA patients and six osteoarthritis (OA) patients as controls were collected. The citrullinated proteins in SFs were extracted by immunoprecipitation with rabbit anti-citrulline antibodies. Matrix-assisted laser desorption/ionization time of flight mass spectrometry/time of flight mass spectrometry (MALDI-TOF/TOF) mass spectrometry was subsequently performed to discover a characteristic neutral loss to finally determine citrullinated autoantigens. A total of 182 citrullinated peptides and 200 citrullinated sites were identified in RA SFs, while 3 citrullinated peptides and 4 citrullinated sites were identified in OA SFs. The 182 citrullinated peptides from RA SFs and the 3 citrullinated peptides from OA SFs were derived from 83 and 3 autoantigens, respectively. Eighty-three autoantigens except protein-arginine deiminase type-2 (PADI2) and protein-arginine deiminase type-2 (PADI4) were over-citrullinated compared with controls, and the citrullinated sites of PADI2 and PADI4 were different in two groups. Interestingly, citrullinated histone H3.3 (H3F3A) was found in OA controls, but not in RA groups. The differential citrullinated proteins identified in RA SFs suggested potential autoantigens were targeted for ACPAs response and might contribute to the induction and perpetuation of complement activation and joint inflammation in RA.
Pseudoaneurysm (PSA) is a rare complication of pancreatic transplantation and can present with gastrointestinal (GI) bleeding. We present a case of a 61-year-old male, who had a history of a pancreas transplant for type I diabetes mellitus 12 years ago, who presented with GI bleeding. He had a CT scan that showed a small PSA in the distal aorta near the arterial anastomosis of his previous pancreas transplant. He underwent an angiogram showing a distal aortic PSA with a wide sac. The patient was initially treated with observation and had recurrent bleeding. The patient had a repeat CT scan showing an increase in the size of the aortic pseudoaneurysm with contrast into the GI tract. He underwent an emergent endovascular stent placement with good recovery. Pancreatic transplantations have a low incidence of PSA; however, patients can present with sentinel gastrointestinal bleeding followed by more massive bleeding. These patients should undergo a CT scan with contrast and angiogram for accurate diagnosis and treatment.
Hyperlipidemia (HLP) is a metabolic disorder caused by abnormal lipid metabolism. Recently, the prevalence of HLP caused by poor dietary habits in the population has been increasing year by year. In addition, lipid-lowering drugs currently in clinical use have shown significant improvement in blood lipid levels, but are accompanied by certain side effects. However, bioactive marine substances have been shown to possess a variety of physiological activities such as hypoglycemic, antioxidant, antithrombotic and effects on blood pressure. Therefore, the hypolipidemic efficacy of marine bioactive substances with complex and diverse structures has also attracted attention. This paper focuses on the therapeutic role of marine-derived polysaccharides, unsaturated fatty acids, and bioactive peptides in HLP, and briefly discusses the main mechanisms by which these substances exert their hypolipidemic activity in vivo.
Background: DJ-1 (also known as PARK7), a noted protein implicated in modulating ROS production and immune response, has been observed to play critical roles in the pathogenesis of many forms of liver disease through multiple mechanisms. However, its role and specific mechanism in acetaminophen (APAP) -induced liver injury have not been explored. Results: In this present study, by employing an acute liver injury induced by APAP overdose mouse model, we demonstrated that DJ-1 knockout (DJ-1−/−) mice showed reduced liver injury and lower mortality. In accordance with these changes, there were also alleviating inflammatory responses in both the serum and the liver of the DJ-1−/− mice compared to those of the wild-type (WT) mice. Functional experiments showed that APAP metabolism did not affected by DJ-1 deficiency. In addition, to investigate DJ-1 modulates which kind of cell types during APAP-overdose-induced acute liver injury, hepatocyte-specific DJ-1-knockout (Alb-DJ-1−/−) and myeloid-specific DJ-1-knockout (Lysm-DJ-1−/−) mice were generated. Interestingly, hepatic deletion of DJ-1 did not protect APAP-overdose induced hepatotoxicity and inflammation, whereas Lysm-DJ-1−/− mice showed similar protective effects as DJ-1−/− mice which suggest that the protective effects of deletion of DJ-1 was through modulating myeloid cell function. Consistently, there were alleviated pro-inflammatory cells infiltration and reduced reactive oxygen species (ROS) production in the liver of Lysm-DJ-1−/− mice relative to control mice. Conclusion: our findings clearly defined that deletion of DJ-1 protects APAP-induced acute liver injury through decreasing inflammatory response, and suggest DJ-1 as a potential therapeutic and/or prophylactic target of APAP-induced acute liver injury.
Thirty nine patients with pathologically confirmed parotid tumors, including 18 cases of pleomorphic adenomas, 12 cases of papillary cystadenoma lymphomatosum and 9 cases of malignant tumors, were enrolled in the study. Characteristics on routine MR image, diffusion weighted imaging (DWI), time-signal intensity curve (TIC) and apparent diffusion coefficient (ADC) value in different types of tumors were evaluated. There were significant differences in imaging features between benign and malignant tumors (P<0.01). The TIC types were A, B and C for pleomorphic adenomas, papillary cystadenoma lymphomatosum and malignant tumors, respectively. The mean ADC value of pleomorphic adenomas was significantly higher than that of papillary cystadenoma lymphomatosum and malignant tumors (P<0.01). No significant difference in ADC values between papillary cystadenoma lymphomatosum and malignant tumors was detected (P=0.73). The study indicates that MR plain scan combined with dynamic contrast enhanced MRI and DWI may be helpful in pre-operative differentiation of common parotid tumors.
Key words:
Parotid neoplasms; Magnetic resonance imaging; Image enhancement, dynamic; Diffusion magnetic resonance imaging
Non-alcoholic fatty liver disease (NAFLD) is a predominant contributor to end-stage liver disease in the forthcoming decades. Polygonum perfoliatum L. (PPL) is an herbal medicine with anti-lipid peroxidation and anti-inflammatory properties. However, detailed hepatoprotective effects of PPL against NAFLD and its underlying mechanisms are not fully understood. Here, we found that PPL protects against high fat diet (HFD)-induced hepatic steatosis, lipid peroxidation, and glucose-lipid metabolism dysfunction in NAFLD mice. We therefore performed a label-free quantitative proteomic profiling analysis to determine the effect of PPL treatment on liver tissue proteomics and identified that activated PPARs/CPT1A/CPT2-mediated hepatic fatty acid β-oxidation (FAO) process was significantly altered. In vitro treatment of hepatocytes with PPL confirmed this altered process and FAO inhibitor etomoxir (ETO) attenuated the lipid-lowering activity of PPL in hepatocytes. Ultra-high-performance liquid chromatography/Q Exactive-HFX (UPLC/QE-HFX) was used to determine the material basis of anti-NAFLD activity of PPL. Our results have demonstrated the efficacy and potential mechanisms of PPL as an effective pharmacological therapy of NAFLD.