The orthotropic steel deck is a prevalent stiffening girder structure utilized in long-span cable-stayed bridges and suspension bridges. Nonetheless, the issue of fatigue cracking has persisted in in-service orthotropic steel decks, significantly impacting the longevity of bridges. This study examines the analysis of the distribution of residual stress during the rewelding process of a fatigue crack at the U-rib-to-deck-plate joint of an orthotropic steel bridge deck. Additionally, the impact of the initial welding and the stiffness of the boundary constraint on the residual stress field during rewelding is discussed. The findings indicate that the removal of the fatigue crack prior to rewelding alleviates the transverse residual stress caused by the initial welding. After undergoing the rewelding procedure, both the transverse residual stress and the longitudinal residual stress exhibited a significant stress peak. More precisely, the transverse tensile stress underwent a rise from 21 MPa to 385 MPa, while the longitudinal tensile stress experienced an increase from 345 MPa to 525 MPa. Furthermore, the range of tensile stress within the longitudinal residual distribution expanded by 88%. Moreover, the stress redistribution during the rewelding of the local fatigue crack varied depending on the constraints imposed on the steel bridge deck. Notably, the transverse residual stress increases by 40.6% when compared to the absence of constraints. The findings of this research offer valuable insights for the implementation of rewelding repair techniques on steel bridge decks, emphasizing the significance of considering the effects of residual stresses induced during the rewelding process.
The key technology to overcome the drawbacks of hyperspectral imaging (expensive, high capture delay, and low spatial resolution) and make it widely applicable is to select only a few representative bands from hundreds of bands. However, current band selection (BS) methods face challenges in fair comparisons due to inconsistent train/validation settings, including the number of bands, dataset splits, and retraining settings. To make BS methods easy and reproducible, this paper presents the first band selection search benchmark (BSS-Bench) containing 52k training and evaluation records of numerous band combinations (BC) with different backbones for various hyperspectral analysis tasks. The creation of BSS-Bench required a significant computational effort of 1.26k GPU days. By querying BSS-Bench, BS experiments can be performed easily and reproducibly, and the gap between the searched result and the best achievable performance can be measured. Based on BSS-Bench, we further discuss the impact of various factors on BS, such as the number of bands, unsupervised statistics, and different backbones. In addition to BSS-Bench, we present an effective one-shot BS method called Single Combination One Shot (SCOS), which learns the priority of any BCs through one-time training, eliminating the need for repetitive retraining on different BCs. Furthermore, the search process of SCOS is flexible and does not require training, making it efficient and effective. Our extensive evaluations demonstrate that SCOS outperforms current BS methods on multiple tasks, even with much fewer bands. Our BSS-Bench and codes are available in the supplementary material and will be publicly available.
The irregular joint network unique to columnar joints separates the rock mass into several irregular polygonal prisms. Similar physical model specimens of columnar jointed rock mass (CJRM) were fabricated using a rock-like material. The effect of the irregularity of the joint network was considered in the horizontal plane, and the effect of the dip angle of the joint network was considered in the vertical plane. The strength and deformation moduli of the specimen were investigated using uniaxial compression tests. A total of four failure modes of regular columnar jointed rock mass (RCJRM) and irregular columnar jointed rock mass (ICJRM) were identified through the tests. The peak stress of the irregular columnar jointed rock mass specimen is reduced by 56.65%. The strength and deformation moduli of RCJRM were greater than those of ICJRM, while the anisotropic characteristics of ICJRM were stronger. The failure mode of CJRM was determined by the dip angle. With the increase in the dip angle, the strength and deformation moduli of irregular columnar jointed rock mass are a symmetrical “V” type distribution, 45° corresponds to the minimum strength, and 30° obtains the minimum deformation modulus. With the increase in the irregularity coefficient, the strength and deformation moduli of CJRM decreased first and then increased gradually. When the irregularity coefficient is 0.1, the linear deformation modulus reaches the minimum value. When the irregularity coefficient is 0.7, the median deformation modulus reaches the minimum value. The fitting function proposed in the form of the cosine function managed to predict the strength value of CJRM and showed the strength of the anisotropic characteristics caused by the change in the dip angle. Compared with the existing physical model test results, it is determined that the strength of the specimen is positively correlated with the addition amount of rock-like material and the loading rate, and negatively correlated with the water consumption.
The columnar joint skeleton of 3D printed Acrylonitrile Butadiene Styrene (ABS) material, the skeleton of cement mortar and ultraviolet aging treatment are combined to pour the columnar joint rock mass (CJRM) test block. The strength, deformation, energy and failure modes of the specimens with different dip angles were analyzed by uniaxial compression test. The influence of joint skeleton on the strength of the test block was analyzed. The effect of aging time on ABS parameters was evaluated. The results show that the uniaxial compressive strength and elastic modulus are ' U ' type with the increase of dip angle, the elastic strain energy is ' V ' type, and the dip angle of 45° is the minimum value. The four failure modes are: shear failure, splitting failure, shear tensile mixed failure, shear splitting mixed failure. The anisotropy of CJRM is extremely high. The skeleton reduces the strength and elastic modulus of the solid test block, and has the greatest influence on the strength of the test block with dip angle of 75°. With the increase of aging time, the strength and deformation parameters of ABS decreased, and the yellowness index and infrared spectrum peak area increased.