The demand for accurate and efficient immunoassays calls for the development of precise, high-throughput analysis methods. This paper introduces a novel approach utilizing a weak measurement interface sensor for immunoassays, offering a solution for high throughput analysis. Weak measurement is a precise quantum measurement method that amplifies the weak value of a system in the weak interaction through appropriate pre- and post-selection states. To facilitate the simultaneous analysis of multiple samples, we have developed a chip with six flow channels capable of conducting six immunoassays concurrently. We can perform real-time immunoassay to determine the binding characteristics of spike protein and antibody through real-time analysis of the flow channel images and calculating the relative intensity. The proposed method boasts a simple structure, eliminating the need for intricate nano processes. The spike protein concentration and relative intensity curve were fitted using the Log-Log fitting regression equation, and R2 was 0.91. Utilizing a pre-transformation approach to account for slight variations in detection sensitivity across different flow channels, the present method achieves an impressive limit of detection(LOD) of 0.85 ng/mL for the SARS-CoV-2 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, with a system standard deviation of 5.61. Furthermore, this method has been successfully verified for monitoring molecular-specific binding processes and differentiating binding capacities.
Abstract Multifunctional nanomedicines have been used in atherosclerosis theranostics. Herein, phosphatidylserine‐specific peptide CLIKKPF‐functionalized carbon‐dots nanozymes (pep‐CDs) are reported for specific and efficient noninvasive theranostic of atherosclerosis. Surprisingly, pep‐CDs are discovered to not only inherit the inherent properties of carbon dots (CDs), including deep‐red fluorescence emission, photoacoustic response, and superoxide dismutase‐like antioxidant, and anti‐inflammatory activities but also possess the ability to target recognition on foam cells and target localization on plaques due to the specific interaction of CLIKKPF with phosphatidylserine on the membrane outer surface of foam cells. Furthermore, the target localization effect of pep‐CDs vastly promotes the efficient accumulation of CDs in plaque, thus maximizing AS theranostic of CDs. Interestingly, pep‐CDs could be developed to image plaque for monitoring atherosclerosis pathological progression in real‐time resulting from the different content of foam cells. This work on the one hand proposes a simple and feasible strategy to construct theranostic nanoplatform employing only a single functional unit (i.e., multifunctional CDs) to simplify the fabrication procedure, on the other hand, highlights the advantages of the active target auxiliary mode for atherosclerosis theranostic applications.
Recently, federated learning (FL) has emerged as a popular technique for edge AI to mine valuable knowledge in edge computing (EC) systems. To mitigate the computing/communication burden on resource-constrained workers and protect model privacy, split federated learning (SFL) has been released by integrating both data and model parallelism. Despite resource limitations, SFL still faces two other critical challenges in EC, i.e., statistical heterogeneity and system heterogeneity. To address these challenges, we propose a novel SFL framework, termed MergeSFL, by incorporating feature merging and batch size regulation in SFL. Concretely, feature merging aims to merge the features from workers into a mixed feature sequence, which is approximately equivalent to the features derived from IID data and is employed to promote model accuracy. While batch size regulation aims to assign diverse and suitable batch sizes for heterogeneous workers to improve training efficiency. Moreover, MergeSFL explores to jointly optimize these two strategies upon their coupled relationship to better enhance the performance of SFL. Extensive experiments are conducted on a physical platform with 80 NVIDIA Jetson edge devices, and the experimental results show that MergeSFL can improve the final model accuracy by 5.82% to 26.22%, with a speedup by about 1.74x to 4.14x, compared to the baselines.
The reduction of oil fouling in pipes and tanks is essential for the oil storage and transportation industry. In this study, a superhydrophilic/underwater superoleophobic surface (SUSS) with high wearability, weatherability, and durability was developed using a facile two-step synthesis method and used to expel fouled oil from the surface using water without a surfactant. Some typical oils, including kerosene and white oil, can be spontaneously expelled by static water; however, rapeseed oil requires motive water for expulsion because of its high affinity for the SUSS. Different occurrences can be estimated based on a correlated parameter, φ(Pe), which is calculated using an introduced dimensionless number, Pe=σLVuμ. A positive value of φ indicates the occurrence of fouled-oil expulsion by water replacement, whereas a negative value indicates no occurrence of this phenomenon. This study provides a facile strategy for the rapid cleansing of oil-fouled pipes and tanks without using a detergent, thereby lowering costs and environmental risks.
Abstract Atherosclerosis (AS) is a chronic inflammation vascular disease, with its ongoing progression can lead to the onset of cardiovascular diseases. Traditional drug therapy is limited by poor drug delivery, insufficient drug accumulation, and notable toxic side effects. In addition, the failure to receive an early AS diagnosis is primarily responsible for the delayed treatment, which subsequently contributes to the high frequency of life‐threatening cardiovascular events. In this work, a macrophage membranes (MM)‐camouflaged reactive oxygen species (ROS)‐sensitive nanotheranostic platform (LC‐MM) is constructed to improve AS target diagnosis and treatment efficacy. Thanks to the strong antioxidant properties of carbon dots (CDs), CDs as drug carriers for lovastatin aimed to synergistically treat AS by reducing ROS accumulation and suppressing inflammatory responses in vitro and in vivo are employed. The active functions of MM coupled with the ROS‐responsiveness of LC nanoplatform are expected to enhance the efficacy of nanotherapy, particularly to reduce lipid deposition, macrophage infiltration, necrotic core size, collagen content, pro‐inflammatory cytokines, and oxidative stress accumulation. Moreover, the near‐infrared emission properties inherited from CDs facilitated precise fluorescence (FL) imaging for AS plaques. Thus, the biomimetic nanotheranostic agent LC‐MM represented a powerful platform for safe and effective AS management.