A serious game-based cellphone augmented reality system (CARS) was developed for rehabilitation of stroke survivors, which is portable, convenient, and suitable for self-training.This study aims to examine the effectiveness of CARS in improving upper limb motor function and cognitive function of stroke survivors via conducting a long-term randomized controlled trial and analyze the patient's acceptance of the proposed system.A double-blind randomized controlled trial was performed with 30 poststroke, subacute phase patients. All patients in both the experimental group (n=15) and the control group (n=15) performed a 1-hour session of therapy each day, 5 days per week for 2 weeks. Patients in the experimental group received 30 minutes of rehabilitation training with CARS and 30 minutes of conventional occupational therapy (OT) each session, while patients in the control group received conventional OT for the full 1 hour each session. The Fugl-Meyer Assessment of Upper Extremity (FMA-UE) subscale, Action Research Arm Test (ARAT), manual muscle test and Brunnstrom stage were used to assess motor function; the Mini-Mental State Examination, Add VS Sub, and Stroop Game were used to assess cognitive function; and the Barthel index was used to assess activities of daily living before and after the 2-week treatment period. In addition, the User Satisfaction Evaluation Questionnaire was used to reflect the patients' adoption of the system in the experimental group after the final intervention.All the assessment scores of the experimental group and control group were significantly improved after intervention. After the intervention. The experimental group's FMA-UE and ARAT scores increased by 11.47 and 5.86, respectively, and were both significantly higher than the increase of the control group. Similarly, the score of the Add VS Sub and Stroop Game in the experimental group increased by 7.53 and 6.83, respectively, after the intervention, which also represented a higher increase than that in the control group. The evaluation of the adoption of this system had 3 sub-dimensions. In terms of accessibility, the patients reported a mean score of 4.27 (SD 0.704) for the enjoyment of their experience with the system, a mean 4.33 (SD 0.816) for success in using the system, and a mean 4.67 (SD 0.617) for the ability to control the system. In terms of comfort, the patients reported a mean 4.40 (SD 0.737) for the clarity of information provided by the system and a mean 4.40 (SD 0.632) for comfort. In terms of acceptability, the patients reported a mean 4.27 (SD 0.884) for usefulness in their rehabilitation and a mean 4.67 (0.617) in agreeing that CARS is a suitable tool for home-based rehabilitation.The rehabilitation based on combined CARS and conventional OT was more effective in improving both upper limb motor function and cognitive function than was conventional OT. Due to the low cost and ease of use, CARS is also potentially suitable for home-based rehabilitation.Chinese Clinical Trial Registry ChiCTR1800017568; https://tinyurl.com/xbkkyfyz.
Defensins constitute a major class of cationic antimicrobial peptides in mammals and vertebrates, acting as effectors of innate immunity against infectious microorganisms. It is generally accepted that defensins are bactericidal by disrupting the anionic microbial membrane. Here, we provide evidence that membrane activity of human α‐defensins does not correlate with antibacterial killing. We further show that the α‐defensin human neutrophil peptide‐1 (HNP1) binds to the cell wall precursor lipid II and that reduction of lipid II levels in the bacterial membrane significantly reduces bacterial killing. The interaction between defensins and lipid II suggests the inhibition of cell wall synthesis as a novel antibacterial mechanism of this important class of host defense peptides.
A Rathke's cleft cyst (RCC) is a common, benign, cystic disease that often leads to hypophyseal dysfunction or head symptoms. The relationship between RCCs and pituitary gland function is not clear. We therefore carried out a study to examine this relationship in greater detail.The study was a retrospective, cohort design in patients diagnosed with a RCC between January 2019 to July 2021 at the First Affiliated Hospital of Zhengzhou University, China.A total of 221 patients were enrolled and then divided into study cohorts according to the diameter of the RCC, clinical manifestations, and surgical treatment received. The majority of patients were symptomatic (143/221), including 83 cases of dizziness and headache, 9 of vision loss and visual field defect, and 2 of diabetes insipidus. 52 cases had abnormal pituitary function, with 8 cases interestingly showing high adrenocorticotropic-hormone (ACTH) and cortisone levels, while 8 juvenile cases had developed central precocious puberty. Patients with larger RCCs were more likely to present with headaches and dizziness, with subjects who suffered from these symptoms having high ACTH and cortisone levels.Although the size of a RCC is not an important factor influencing hypopituitary function, we consider that endocrine evaluation should be carried out in all patients with a RCC.
Globally, more than 10 million new stroke cases occur annually, of which aphasia accounts for about one-third. Aphasia has become an independent predictor of functional dependence and death for the stroke population. The closed-loop rehabilitation of combining behavioral therapy with central nerve stimulation seems to be the research trend of post-stroke aphasia (PSA) due to its advantages in improving linguistic deficits.To verify the clinical efficacy of a closed-loop rehabilitation program combining melodic intonation therapy (MIT) with transcranial direct current stimulation (tDCS) for PSA.This was a single-center, assessor-blinded, randomized controlled clinical trial, which screened 179 patients and included 39 PSA subjects, with the registration number ChiCTR2200056393 in China. Demographic and clinical data were documented. The primary outcome was the Western Aphasia Battery (WAB) used to assess language function, and the secondary outcomes included Montreal Cognitive Assessment (MoCA), Fugl-Meyer Assessment (FMA), and Barthel Index (BI) for evaluating cognition, motor, and activities of daily living, respectively. With the computer-generated randomization sequence, subjects were randomly divided into the conventional group (CG), MIT combined with sham stimulation group (SG), and MIT combined with tDCS group (TG). After the three-week intervention, the functional changes in each group were analyzed by the paired sample T-test, and the functional difference between the three groups was analyzed by ANOVA.There was no statistical difference on the baseline. After the intervention, the WAB's aphasia quotient (WAB-AQ), MoCA, FMA, and BI were statistically different in SG and TG, including all the sub-items in WAB and FMA, while only listening comprehension, FMA, and BI were statistically different in CG. The differences of WAB-AQ, MoCA, and FMA were statistically different among the three groups, but BI was not. The post hoc test results revealed that the changes of WAB-AQ and MoCA in TG were more significant than the others.MIT combined with tDCS can augment the positive effect on language and cognitive recovery in PSA.
Motor function assessment is essential for post-stroke rehabilitation, while the requirement for professional therapists’ participation in current clinical assessment limits its availability to most patients. By means of sensors that collect the motion data and algorithms that conduct assessment based on such data, an automated system can be built to optimize the assessment process, benefiting both patients and therapists. To this end, this paper proposed an automated Fugl-Meyer Assessment (FMA) upper extremity system covering all 30 voluntary items of the scale. RGBD sensors, together with force sensing resistor sensors were used to collect the patients’ motion information. Meanwhile, both machine learning and rule-based logic classification were jointly employed for assessment scoring. Clinical validation on 20 hemiparetic stroke patients suggests that this system is able to generate reliable FMA scores. There is an extremely high correlation coefficient (r = 0.981, p < 0.01) with that yielded by an experienced therapist. This study offers guidance and feasible solutions to a complete and independent automated assessment system.
Early brain injury (EBI) is associated with the adverse prognosis of subarachnoid hemorrhage (SAH) patients. The key bioactive component of the Chinese herbal medicine Artemisia asiatica Nakai (Asteraceae) is eupatilin. Recent research reports that eupatilin suppresses inflammatory responses induced by intracranial hemorrhage. This work is performed to validate whether eupatilin can attenuate EBI and deciphers its mechanism. A SAH rat model was established by intravascular perforation in vivo. At 6 h after SAH in rats, 10 mg/kg eupatilin was injected into the rats via the caudal vein. A Sham group was set as the control. In vitro, BV2 microglia was treated with 10 μM Oxyhemoglobin (OxyHb) for 24 h, followed by 50 μM eupatilin treatment for 24 h. The SAH grade, brain water content, neurological score, and blood-brain barrier (BBB) permeability of the rats were measured 24 h later. The content of proinflammatory factors was detected via enzyme-linked immunosorbent assay. Western blot analysis was conducted to analyze the expression levels of TLR4/MyD88/NF-κB pathway-associated proteins. In vivo, eupatilin administration alleviated neurological injury, and decreased brain edema and BBB injury after SAH in rats. Eupatilin markedly reduced the levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), and suppressed the expression levels of MyD88, TLR4, and p-NF-κB p65 in the SAH rats' cerebral tissues. Eupatilin treatment also reduced the levels of IL-1β, IL-6, and TNF-α, and repressed the expression levels of MyD88, TLR4, and p-NF-κB p65 in OxyHb-induced BV2 microglia. Additionally, pyrrolidine dithiocarbamate or resatorvid enhanced the suppressive effects of eupatilin on OxyHb-induced inflammatory responses in BV2 microglia. Eupatilin ameliorates SAH-induced EBI via modulating the TLR4/MyD88/NF-κB pathway in rat model.
The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53 and are important molecular targets for anticancer therapy. Grafting four residues of p53 critical for MDM2/MDMX binding to the N-terminal α-helix of BmBKTx1, a scorpion toxin isolated from the venom of the Asian scorpion Buthus martensi Karsch, converts the miniature protein into an effective inhibitor of p53 interactions with MDM2 and MDMX. Additional mutations enable the 27-residue miniprotein inhibitor to traverse the cell membrane and selectively kill tumor cells in a p53 dependent manner.
Transcranial magnetic stimulation, as a relatively new type of treatment, is a safe and non-invasive method for pain therapy. Here, we used CiteSpace software to visually analyze 440 studies concerning transcranial magnetic stimulation in pain research from 2010 to 2021, indexed by Web of Science, to clarify the research hotspots in different periods and characterize the process of discovery in this field. The United States ranked first in this field. Lefaucheur JP, Fregni F, and Andrade ACD made great contributions to this field of study. The most prolific institution was University of São Paulo. The four main hot keywords were neuropathic pain, motor cortex, connectivity, and non-invasive brain stimulation. There were three main points that were generally accepted: (1) definite analgesic effect of high-frequency rTMS of M1 contralateral to pain side in neuropathic pain; (2) there are inconclusive recommendations regarding rTMS of the dorsolateral prefrontal cortex (DLPFC) in fibromyalgia and neuropathic pain; (3) there is low-quality evidence that single doses of high-frequency rTMS of the motor cortex may have short-term effects on chronic pain. This bibliometric analysis indicated that prospective, multi-center, large-sample, randomized controlled trials are still needed to further verify the effectiveness of various transcranial magnetic stimulation parameters in pain research.
Background: Over the past decade, many studies in the field of transcranial direct current stimulation (tDCS) in stroke have been published in scholarly journals. However, a scientometric analysis focusing on tDCS after stroke is still missing. The purpose of this study is to deliver a bibliometric analysis to investigate the global hotspots and frontiers in the domain of tDCS in stroke from 2012 to 2021. Methods: Articles and reviews related to tDCS in stroke were retrieved and obtained from the Web of Science core collection database from 2012 to 2021. Data visualization and analysis were conducted by using CiteSpace, VOSviewer, and Microsoft Excel 2019. Results: Finally, 371 publications were included in the scientometric analysis, including 288 articles and 83 reviews. The results showed that the number of publications per year increased from 15 to 68 in the last 10 years. Neurosciences was the main research hotspot category (n = 201). Frontiers in Human Neuroscience was the most published journal with 14 papers. The most productive author, institution, and country were Fregni F (n = 13), the League of European Research Universities (n = 37), and the United States of America (n = 98), respectively. A burstness analysis of keywords and the literature indicated that current studies in the field of tDCS in stroke focused on poststroke aphasia, tDCS combined with robotic therapy, and anatomical parameters. Conclusion: The research of tDCS in stroke is predicted to remain a research hotspot in the future. We recommend investigating the curative effect of other different tDCS closed-loop rehabilitation methods for different stroke dysfunctions. In conclusion, this bibliometric study presented the hotspots and trends of tDCS in stroke over the last decade, which may help researchers manage their further studies.
Tumoren wird der Stachel gezogen: Die Onkoproteine MDM2 und MDMX beeinflussen die Aktivität und Stabilität des Tumorsuppressorproteins p53 und sind wichtige molekulare Ziele der Krebstherapie. Das Aufpfropfen von vier für das Binden von MDM2/MDMX wichtigen Resten auf die C-terminale α-Helix von Apamin (siehe Bild) überführt das Bienengiftneurotoxin in eine neuartige Klasse leistungsfähiger, möglicherweise gegen Krebs wirksamer p53-Aktivatoren.