Background: Lycium barbarum L. (LbL), as one of the traditional Chinese medicines, has been used to treat lung disease, hematemesis, hypertension, inflammation and diabetes for centuries. This study aims to reveal the hypoglycemic and hypolipidemic effects of LbL root bark extract on hyperlipidemic alloxan-induced diabetic mice. Methods: A total of 24 male, hyperlipidemic, alloxan-induced diabetic mice were divided into three groups: diabetes control, diabetes plus LbL high dose (200 mg/kg) and diabetes plus LbL low dose (100 mg/kg). One group of eight normal mice was kept as a control. The four groups of mice were administered LbL solution or dH2O daily for 28 days. Fasting blood glucose, total cholesterol, triglycerides, body weight and serum insulin levels have been determined. Results: Results indicated that LbL-treated groups resulted in significant dose-dependent decreases of fasting blood glucose, total cholesterol and triglycerides. The LbL treated group also showed a tendency to improve in body w...
Corrigendum on: Li J, Muneer MA, Sun A, Guo Q, Wang Y, Huang Z, Li W and Zheng C (2023). Magnesium application improves the morphology, nutrients uptake, photosynthetic traits, and quality of tobacco (Nicotiana tabacum L.) under cold stress. Front. Plant Sci. 14:1078128. doi: 10.3389/fpls.2023.1078128 In the published article, there was two errors in FIGURE 1 and FIGURE 3 as published. In figure 1C, the lowest area should be Longyan. We mistakenly marked it as Nanping. In figure 3F, the column diagram of T16 for root under +Mg treatment should be filled with blue color. The corrected FIGURE 1
All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.
In terms of energy efficiency and computational speed, neuromorphic electronics based on non-volatile memory devices is expected to be one of most promising hardware candidates for future artificial intelligence (AI). However, catastrophic forgetting, networks rapidly overwriting previously learned weights when learning new tasks, remains as a pivotal hurdle in either digital or analog AI chips for unleashing the true power of brain-like computing. To address catastrophic forgetting in the context of online memory storage, a complex synapse model (the Benna-Fusi model) has been proposed recently[1], whose synaptic weight and internal variables evolve following a diffusion dynamics. In this work, by designing a proton transistor with a series of charge-diffusion-controlled storage components, we have experimentally realized the Benna-Fusi artificial complex synapse. The memory consolidation from coupled storage components is revealed by both numerical simulations and experimental observations. Different memory timescales for the complex synapse are engineered by the diffusion length of charge carriers, the capacity and number of coupled storage components. The advantage of the demonstrated complex synapse in both memory capacity and memory consolidation is revealed by neural network simulations of face familiarity detection. Our experimental realization of the complex synapse suggests a promising approach to enhance memory capacity and to enable continual learning.
Florfenicol (FLR), a broad-spectrum antibacterial agent, is commonly used in the breeding and cultivation of aquatic animals. microRNAs (miRNAs) control gene expression by mediating post-transcriptional mRNA repression. However, not much has been reported regarding their functions when crustaceans encounter FLR stress. Herein we observed histological alterations and performed small RNA sequencing to characterize differentially expressed miRNAs in the hepatopancreas of Portunus trituberculatus exposed to FLR (80 mg/kg) stress for 3 h and 12 h. Our results indicated irregularities in the tubular structure of hepatopancreas, separation between epithelium and myoepithelial layer, ruptured epithelial cells, and tubule degeneration. Thirty-five (19 up- and 16 downregulated) and 31 (17 up- and 14 downregulated) differentially expressed miRNAs were detected between Group-C and Group-FLR-3 h and between Group-C and Group-FLR-12 h, respectively. Dual luciferase reporter assay was performed for predicting target genes of miR-34 and miR-263b. We found that mir-263b directly inhibited cytochrome C expression at the cell level in vitro. Functional analyses of predicted target genes of differentially expressed miRNAs revealed that FLR stress induced xenobiotic metabolism, immune toxicity, and cell apoptosis, as well as influenced diverse metabolic processes. To our knowledge, this is the first report on the response of P. trituberculatus to FLR stress. Our findings provide evidence that miRNAs participate in cell apoptosis and immune regulation in crabs.
Understanding the influence of vegetation types on soil particle-size distribution (PSD) is essential to evaluate the effects of sediment control by vegetation restoration. In this work, we studied the effects of different vegetation types, including bare land, meadow, shrub and forest on soil PSD in Jiangjiagou gully, Yunnan province, China. A total of 60 soil samples were collected and analyzed for soil particle size distribution using the laser diffraction method. Fractal theory was used to calculate multifractal parameters. The volume fraction of silt particles in shrub and forest is significantly higher than that in bare land, meadow, whereas the total volume fraction of sand particles in bare land and meadow exceed that in shrub and forest. The soil particle size distribution along soil layers has no significant difference in each vegetation type. The volumetric fractal dimension is significantly higher in forest and shrub than in bare land and grassland, but there is no significant difference between forest and shrub. In addition, soil erosion resistance exhibits significant differences of forest > shrub > grassland > bare land. Multifractal parameters are highest in bare land except for multifractal spectrum values ( f (α max ) and f (α min )) and the maximum value of singularity index (α min ). All generalized dimensions spectra curves of the PSD are sigmoidal, whereas the singular spectrum function shows an asymmetric upward convex curve. Furthermore, soil erosion resistance has significant relationships with multifractal parameters. Our results suggest that multifractal parameters of the soil PSD can predict its anti-ability to erosion. This study also provides an important insight for the evaluation of soil structure improvement and the effects of erosion control by vegetation restoration in dry-hot valley areas.
The present work investigated the anti-inflammatory, antioxidant, and lung protection effects of acetylated Pleurotus geesteranus polysaccharides (AcPPS) on acute lung injury (ALI) mice. The acetylation of AcPPS was successfully shown by the peaks of 1737 cm−1 and 1249 cm−1 by FTIR. The animal experiments demonstrated that lung damage can be induced by zymosan. However, the supplementation of AcPPS had potential effects on reducing lung index, remitting inflammatory symptoms (TNF-α, IL-1β, and IL-6), inhibiting NF-κB signal pathway based on up-regulating the level of IκBα and down-regulating p-IκBα level by Western blotting and immunofluorescence assay, preventing oxidative stress (ROS, SOD, GSH-Px, CAT, T-AOC, and MDA), reducing lipid accumulation (TC, TG, LDL-C, HDL-C, and VLDL-C), and alleviating lung functions by histopathologic observation. These results demonstrated that AcPPS might be suitable for natural food for prevention or remission in ALI.
Pine wood nematode (PWN; Bursaphelenchus xylophilus) is the causative agent of pine wilt disease (PWD), which is considered the most dangerous biohazard to conifer trees globally. The transmission of PWN relies on insect vectors, particularly the Japanese pine sawyer (JPS; Monochamus alternatus). However, the molecular mechanism underlying PWN-JPS assembly remains largely unknown.
Abstract Athletes continuously seek out creative methods and technologies to improve their physical fitness and overall performance. Wearable technology's progress offers a swift and eco‐conscious way to consistently observe physiological changes evidenced by biomarkers, stemming from an athlete's internal exertion or external workload. However, there is still a long distance to further understand the internal physiology of athletes which may bring hope to tailor training and recovery programs individually. The ongoing challenges faced by sports healthcare personnel are in finding biomarkers safely and continuously to control athletes' physical condition and tailor their recovery and eating patterns. The summary of this review encompasses the development of flexible and wearable electrochemical sensors. This article provides an overview of biofluids, commonly detected by wearable biochemical sensors and their mutual anatomical formations, with a focus on sweat and its associated biomarkers. Following this, its real‐world application in sports medicine becomes apparent, both theoretically and potentially. The paper ends by highlighting challenges and imagining the possible development of this exciting emerging field.