Acute promyelocytic leukemia (APL) patients with progressive leukocytosis are more likely to have various complications and poor outcomes. However, the regulatory roles of microRNAs in the leukocytosis of APL have not been clarified. Our study aims to evaluate the effects of miRNAs on leukocytosis during induction therapy of APL patients and explore its potential mechanisms. During induction treatment, patients with white blood cell count higher than 10 × 109/L were divided into leukocytosis group and others were nonleukocytosis group. Using microarray assays, we found that miR-139-5p was significantly downregulated in the leukocytosis group. Elevated expression of miR-139-5p inhibited the proliferation of NB4 cells by arresting the cell cycle and inducing apoptosis. We further identified that MNT was a target of miR-139-5p. miR-139-5p significantly inhibited the proliferation, invasion, and migration function of NB4 cells through targeting MNT. Strategies for regulating miR-139-5p or MNT expression might provide new therapeutic approaches for progressive leukocytosis in APL.
Circulating Pathogenic Factors Circulating pathogenic factor for FSGS development has long been searched. In article number 2301492, Ke Zen, Zhihong Liu, and co-workers identify exosomal miR-186-5p from activated CD8 T cells as such circulating pathogenic factor that causes renal dysfunction. In specific, miR-186-5p is enriched in exosomes of activated CD8 T cells and preferentially enters renal tubular cells where it directly binds endosomal TLR7/8 and initiates renal inflammation.
High mobility group box 1 protein(HMGB1)is a highly conserved non-histone DNA binding protein, which is widely distributed in eukaryotic cells. HMGB1 is an important proinflammatory cytokine, involving in various pathological and physiological processes, such as inflammation, neurogenesis and angiogenesis. In the early stage of intracerebral hemorrhage, HMGB1 can induce secondary brain injury, such as inflammatory reaction, neuronal necrosis, and brain edema. However, in the late stage of intracerebral hemorrhage, HMGB1 can promote angiogenesis and neurogenesis, and thus improving neurological function. HMGB1 will become a novel therapeutic target for intracerebral hemorrhage in the future.
Key words:
Cerebral Hemorrhage; HMGB1 Protein; Inflammation
Chimeric antigen receptor (CAR)-T cell therapy has been confirmed improving remission rates in refractory patients or relapsed B-cell acute lymphoblastic leukemia (R/R B-ALL). However, the added benefits of undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) following CAR-T therapy remain a subject of debate. In this research we investigated the efficiency and long-term outcomes of CD19 CAR-T bridging with allo-HSCT in R/R B-ALL patients. A total of 42 patients were brought into the cohort studies. Our findings revealed that patients who appected CAR-T followed by HSCT had a 1-year overall survival (OS) rate of 70 % and a 1-year leukemia-free survival (LFS) rate of 95 %. Moreover, patients who underwent this combined treatment had higher OS and LFS rates compared to those who received CAR-T therapy alone. In conclusion, the results of this clinical trial provide compelling evidence for the safety and efficacy of using CAR-T therapy as a bridging strategy to allo-HSCT in patients with R/R B-ALL.
Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7) with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release.
The involvement of circulating microRNAs (miRNAs) in cancer and their potential as biomarkers of diagnosis and prognosis are becoming increasingly appreciated; however, little is known about circulating miRNA profiles in astrocytomas. In our study, we performed genome-wide serum miRNA analysis by the Solexa sequencing followed by validation conducted in the training and verification sets with a stem-loop quantitative reverse-transcription PCR (RT-qPCR) assay from serum samples of 122 untreated astrocytomas patients (WHO grades III-IV) and 123 normal controls. Identified miRNAs were subsequently examined in 55 grade II, 15 grade I astrocytomas, 11 astrogliosis, 42 other primary brain tumors and 8 tumor tissues from grades II-IV astrocytomas. In addition, paired serum samples before and after operation were collected from 14 malignant astrocytomas to determine the effect of surgery on the miRNAs' levels. A marked difference in serum miRNA profile was observed between high-grade astrocytomas and normal controls. Seven miRNAs were validated by RT-qPCR assay to be significantly decreased in grades II-IV patients (p < 0.001), including miR-15b*, miR-23a, miR-133a, miR-150*, miR-197, miR-497 and miR-548b-5p, and the seven-miRNA panel demonstrated a high sensitivity (88.00%) and specificity (97.87%) for malignant astrocytomas prediction. These identified miRNAs also exhibited a global decrease in tumor tissues relative to normal tissues. Furthermore, these miRNAs in serum were markedly elevated after operation (p < 0.001). In addition, some of these serum miRNAs were significantly different between malignant and benign cases, astrogliosis and other primary brain tumors. The seven serum miRNAs identified in our study hold potential as noninvasive biomarker for malignant astrocytomas.
Infection of H5N1 influenza virus causes the highest mortality among all influenza viruses. The mechanisms underlying such high viral pathogenicity are incompletely understood. Here, we report that the H5N1 influenza virus encodes a microRNA-like small RNA, miR-HA-3p, which is processed from a stem loop-containing viral RNA precursor by Argonaute 2, and plays a role in enhancing cytokine production during H5N1 infection. Mechanistic study shows that miR-HA-3p targets poly(rC)-binding protein 2 (PCBP2) and suppresses its expression. Consistent with PCBP2 being an important negative regulator of RIG-I/MAVS-mediated antiviral innate immunity, suppression of PCBP2 expression by miR-HA-3p promotes cytokine production in human macrophages and mice infected with H5N1 virus. We conclude that miR-HA-3p is the first identified influenza virus-encoded microRNA-like functional RNA fragment and a novel virulence factor contributing to H5N1-induced 'cytokine storm' and mortality.
Abstract Migrasomes represent a recently uncovered category of extracellular microvesicles, spanning a diameter range of 500 to 3000 nm. They are emitted by migrating cells and harbour a diverse array of RNAs and proteins. Migrasomes can be readily identified in bodily fluids like serum and urine, rendering them a valuable non‐invasive source for disease diagnosis through liquid biopsy. In this investigation, we introduce a streamlined and effective approach for the capture and quantitative assessment of migrasomes, employing wheat germ agglutinin (WGA)‐coated magnetic beads and flow cytometry (referred to as WBFC). Subsequently, we examined the levels of migrasomes in the urine of kidney disease (KD) patients with podocyte injury and healthy volunteers using WBFC. The outcomes unveiled a substantial increase in urinary podocyte‐derived migrasome concentrations among individuals with KD with podocyte injury compared to the healthy counterparts. Notably, the urinary podocyte‐derived migrasomes were found to express an abundant quantity of phospholipase A2 receptor (PLA2R) proteins. The presence of PLA2R proteins in these migrasomes holds promise for serving as a natural antigen for the quantification of autoantibodies against PLA2R in the serum of patients afflicted by membranous nephropathy. Consequently, our study not only pioneers a novel technique for the isolation and quantification of migrasomes but also underscores the potential of urinary migrasomes as a promising biomarker for the early diagnosis of KD with podocyte injury.
Ordered perovskite-type MTiO3/TiO2 nanotube arrays (NTAs) (M = Zn, Co, Ni) are prepared by a general hydrothermal route based on amorphous TiO2 NTAs via electrochemical anodization of Ti foil. The as-anodized amorphous TiO2 is not stable and can react with H2O in solution producing soluble Ti(OH)62− to form anatase nanoparticles (NPs) via water-induced dissolution and recrystallization. The pH and salt content in the solution play important roles in the morphology and composition of the hydrothermal products. In the presence of a metal acetate, the reaction between Ti(OH)62− and H+ is dramatically restricted and the reaction proceeds preferentially between Ti(OH)62− and M2+ (M = Zn, Co, Ni) to produce insoluble MTiO3 NPs which adhere onto the original architecture in situ to form perovskite-type MTiO3/TiO2 NTAs. This study elucidates the role of the amorphous structure in the formation of MTiO3 and provides a general means of synthesizing nanostructured MTiO3.