Chemical oxygen demand (COD) is one of the important indicators to measure the degree of organic pollution in water. In this work, a rapid spectrophotometric method for detection of COD was achieved based on the oxidation of organics in water by photogenerated holes or free radicals and the reduction of phosphomolybdic heteropolyacid by photogenerated electrons by using TiO2 nanoparticles as a photocatalyst. Taking potassium hydrogen phthalate as the COD standard, under the optimal conditions, the absorbance of reduced phosphomolybdic heteropoly acid was linear with COD in the range of 0.50 - 100 mg L -1. The detection limit for was COD detection was 0.171 mg L -1. The proposed methods was used for the determination of COD in real water samples, and the results were in general agreement with the national standard method. Compared with the direct photo initiated reduction of phosphomolybdic heteropoly acid without TiO2 nanoparticles, the photocatalytic reaction has better stability and higher efficiency.
The study of the disorders of ubiquitin‑mediated proteasomal degradation may unravel the molecular basis of human diseases, such as cancer (prostate cancer, lung cancer and liver cancer, etc.) and nervous system disease (Parkinson's disease, Alzheimer's disease and Huntington's disease, etc.) and help in the design of new therapeutic methods. Leucine zipper‑like transcription regulator 1 (LZTR1) is an important substrate recognition subunit of cullin‑RING E3 ligase that plays an important role in the regulation of cellular functions. Mutations in LZTR1 and dysregulation of associated downstream signaling pathways contribute to the pathogenesis of Noonan syndrome (NS), glioblastoma and chronic myeloid leukemia. Understanding the molecular mechanism of the normal function of LZTR1 is thus critical for its eventual therapeutic targeting. In the present review, the structure and function of LZTR1 are described. Moreover, recent advances in the current knowledge of the functions of LZTR1 in NS, glioblastoma (GBM), chronic myeloid leukemia (CML) and schwannomatosis and the influence of LZTR1 mutations are also discussed, providing insight into how LZTR1 may be targeted for therapeutic purposes.
Mesenchymal stem cells (MSCs) have been used in hematopoietic stem cell transplantation for years. However, the safety of MSCs applied in various types of hematologic malignancy has not been comprehensively explored. In the present study, the effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on six representative hematologic malignancy cell lines were explored, including leukemia, multiple myeloma and lymphoma cells. Direct and indirect co-culture models were established, and cell proliferation was assessed by carboxyfluorescein diacetate succinimidyl ester staining. A cytometric bead array cytokine kit was used to quantify cytokines. The expression of interleukin (IL)-6 receptor elements on tumor cells was detected by reverse transcription-polymerase chain reaction and flow cytometry, and the effects of exogenous IL-6 on cell proliferation were determined using a Cell Counting kit-8 assay. The results demonstrated that hUC-MSCs inhibited the proliferation of most of the cell lines examined (THP-1, HL-60, K562 and RPMI-8226), but promoted the proliferation of Raji cells. In addition, hUC-MSCs secreted abundant IL-6, promoted the secretion of IL-10 by RPMI-8226 and Raji cells, and inhibited the secretion of tumor necrosis factor-α by THP-1 cells. These data indicate a varied effect of hUC-MSCs on various types of hematologic malignancy, including distinct mechanisms of cell-to-cell contact and cytokines. Researchers applying hUC-MSCs in lymphoma should be aware of a potential tumor growth-promoting effect.
ABSTRACT The heightened mortality and disability rates, coupled with restricted neurological recovery post intracerebral hemorrhage (ICH), have sparked considerable attention toward its treatment and results. Simultaneously, the influence of the APOE gene on ICH prognosis has been well‐documented. This research aimed to explore the relationship between specific APOE alleles in the present cohort and the incidences of mortality, recurrence, and adverse prognosis, as determined by neurological function assessments in ICH patients. Data on patients diagnosed with ICH and hospitalized in the Department of Neurology at our institution from October 2021 to March 2022 were collected, including determining their APOE genotypes. A 1‐year follow‐up was conducted to evaluate mortality, ICH recurrence, and modified Rankin Scale (mRS) scores at 3 and 12 months. Poor prognosis was defined as an mRS score of ≥ 3. Initially, we analyzed the relationships between different APOE alleles and mortality, recurrence, and poor prognosis. Subsequently, we explored additional factors influencing each prognostic outcome and conducted multivariate analysis to identify independent risk factors. An analysis was conducted on 289 patients diagnosed with ICH. The presence of the ε2 allele was found to be a significant independent predictor for unfavorable outcomes at both 3 months ( p = 0.022, OR = 2.138, 95% CI [2.041, 3.470]) and 1 year ( p = 0.020, OR = 5.116, 95% CI [5.044, 5.307]). Moreover, the ε4 allele was established as an independent risk factor for ICH recurrence within 1 year ( p = 0.025, OR = 2.326, 95% CI [1.163, 2.652]), as well as for mortality at 3 months ( p = 0.037, OR = 4.250, 95% CI [4.068, 4.920]) and 1 year ( p = 0.023, OR = 4.109, 95% CI [4.016, 4.739]). In conclusions, Both APOE ε2 and ε4 variants independently heighten mortality risk, recurrence, and poor prognosis after ICH. The substantial influence underscores the need for additional investigation into the impact of APOE genotype on ICH prognosis.
Osteoporosis (OP), a persistent metabolic bone disorder linked with inflammation, has an undetermined cause. In our research, we employed bidirectional Mendelian randomization (MR) to investigate the interplay between OP and inflammation agents.
The inflammatory response is an unavoidable process and contributes to the destruction of cerebral tissue during the acute ischemic stroke (AIS) phase and has not been addressed fully to date. Insightful understanding of correlation of inflammatory mediators and stroke outcome may provide new biomarkers or therapeutic approaches for ischemic stroke. Here, we prospectively recruited 180 first-ever AIS patients within 72 hrs after stroke onset. We used the National Institutes of Health Stroke Scale (NIHSS) to quantify stroke severity and modified Rankin scale (mRS) to assess the 3-month outcome for AIS patients. Initially, we screened 35 cytokines, chemokines, and growth factors in sera from 75 AIS patients and control subjects. Cytokines that were of interest were further investigated in the 180 AIS patients and 14 heathy controls. We found that IL-1RA, IL-1β, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-13, IL-15, EGF, G-CSF, Flt-3L, GM-CSF and Fractalkine levels were significantly decreased in severe stroke patients. In particular, IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-15, G-CSF and GM-CSF were significantly reduced in AIS patients with poor outcome, compared to those with good prognosis. IL-6 was notably higher in the poor outcome group. Only IL-9 level decreased in the large infarct volume group. After adjusting for confounders, we found that IL-5 was an independent protective factor for prognosis in AIS patients with an adjusted OR of 0.042 (P = 0.007), whereas IL-6 was an independent risk predictor for AIS patients with an adjusted OR of 1.293 (P = 0.003). Our study suggests the levels of serum cytokines are related to stroke severity, short-term prognosis and cerebral infarct volume in AIS patients.