Esteya vermicola is the first recorded endoparasitic nematophagous fungus with high infectivity capacity, attacking the pinewood nematode Bursaphelenchus xylophilus which causes pine wilt disease. Endosymbionts are found in the cytoplasm of E. vermicola from various geographical areas. We sequenced the genome of endobacteria residing in E. vermicola to discover possible biological functions of these widespread endobacteria. Multilocus phylogenetic analyses showed that the endobacteria form a previously unidentified lineage sister to Phyllobacterium myrsinacearum species. The number of genes in the endobacterium was 4542, with 87.8% of the proteins having a known function. It contained a high proportion of repetitive sequences, as well as more Acyl-CoA synthetase genes and genes encoding the electron transport chain, compared with compared with plant-associated P. zundukense Tri 48 and P. myrsinacearum DSM 5893. Thus, this symbiotic bacterium is likely to be more efficient in regulating gene expression and energy release. Furthermore, the endobacteria in nematophagous fungi Esteya vermicola contained multiple nematicidal subtilase/subtilisin encoding genes, so it is likely that endobacteria cooperate with the host to kill nematodes.
In recent years, the digital image recognition technology of concrete structure cracks and deformation of binocular vision technology detection of civil engineering structure have made substantial development. As a result, people's understanding of the road engineering structure cracking and surface deformation recognition gives rise to a new situation. For the research on digital image concrete structure cracking and masonry structure surface deformation recognition technology, the key is to break through in the method, and to improve the traditional recognition technology and mode. Only in this way can we continuously improve the security level of the highway, to adapt to the new requirements of the development of new urbanization and modernization. This thesis focuses on and systematically analyzes the digital image road engineering structure cracking and key technologies of surface deformation recognition and its engineering applications. In addition, we change the concrete structure cracking and masonry structure surface deformation recognition pattern, and realize the breakthrough and innovation of the road structure safety testing means and methods.
Abstract Background: Soil salinization and alkalinization are the main factors that affect the agricultural productivity. Evaluating the persistence of the compound material applied in field soils is an important part of the regulation of the responses of cotton to saline and alkaline stresses. Result: To determine the molecular effects of compound material on the cotton’s responses to saline stress and alkaline stress, cotton was planted in the salinized soil (NaCl 8g kg -1 ) and alkalized soil (Na 2 CO 3 8g kg -1 ) after application of the compound material, and ion content, physiological characteristics, and transcription of new cotton leaves at flowering and boll-forming stage were analyzed. The results showed that compared with saline stress, alkaline stress increased the contents of Na + , K + , SOD, and MDA in leaves. The application of the compound material reduced the content of Na + but increased the K + /Na + ratio, the activities of SOD, POD, and CAT, and REC. Transcriptome analysis revealed that after the application of the compound material, the Na + /H + exchanger gene in cotton leaves was down-regulated, while the K + transporter, K + channel, and POD genes were up-regulated. Besides, the down-regulation of genes related to lignin synthesis in phenylalanine biosynthesis pathway had a close relationship with the ion content and physiological characteristics in leaves. The quantitative analysis with PCR proved the reliability of the results of RNA sequencing. Conclusion: These findings suggest that the compound material alleviated saline stress and alkaline stress on cotton leaves by regulating candidate genes in key biological pathways, which improves our understanding of the molecular mechanism of the compound material regulating the responses of cotton to saline stress and alkaline stress.
With the shortage of common vegetable fat sources, such as soybean oil (SBO), it is urgent to find alternative oil sources for broiler producers. The objective of this study was to evaluate the potential of refined cottonseed oil (CSO) as a replacement for SBO in broiler diets. A total of 180 chickens at 1 d of age were randomly assigned to five treatments of six replicates. One treatment was the basal diet (control), and the other four experimental diets were formulated from the basal diet by replacing (w/w) 25%, 50%, 75%, and 100% of the SBO with refined CSO (only containing 0.2% cyclopropenoid fatty acids, and no free gossypol was detected). At the end of week 6, blood samples were obtained from the jugular vein and the breast muscle was aseptically isolated from two birds per replicate. The results showed that substitution of CSO for low-level SBO had no significant effect (p > 0.05) on broiler performance during the starter period (week 1-3), while 50% level of CSO inclusion significantly increased (p < 0.05) ADG and improved FCR compared with the control group during the finisher period (week 4-6). Broilers fed 100% CSO diets had lower (p < 0.05) levels of serum total protein (TP), albumin (ALB), cholesterol (CHO) concentrations, and serum alkaline phosphatase (AKP) activity than that of the control broilers. Furthermore, the serum antioxidant status appeared to be enhanced by CSO. Additionally, high levels of CSO (75 and 100%) significantly increased the proportions of C14:0 and C18:0 but decreased the proportions of C18:1n9t, C18:2n6c, and ∑ n-6 polyunsaturated fatty acids in breast muscles of broilers. Overall, the SBO could be replaced with refined CSO up to 50% in diets for broilers without adversely affecting the performance, liver functions, and breast muscle fatty acid composition of these broilers.
During the crop harvesting process, it is important to obtain the crop yield quickly, accurately and in real time to accelerate the development of smart agriculture. This paper investigated a denoising method applicable to the impact-type sunflower yield sensor signal under the influence of complex noise background in the pneumatic seed delivery structure for a sunflower combine harvester. A signal processing method combining complementary ensemble empirical mode decomposition (CEEMD) and wavelet threshold denoising (WTD) based on an adaptive decomposition capability was proposed by analyzing the non-smoothness of the signal with the impact-type sunflower yield sensor signal in sunflower fields. CEEMD was used to decompose the sunflower seed impact analog signal and field impact-type sunflower yield sensor signal adaptively, and the high frequency components were processed by WTD. Finally the de-noised signal was obtained by reconstruction. An evaluation objective function of the denoising ability of the algorithm based on signal-noise ratio, root mean square error, smoothness and waveform similarity indexes with different weights was also constructed. The results showed that the evaluation objective functions of the simulated and measured signals after denoising by the CEEMD-WTD method are 1.9719 and 4.5318, respectively, which are better than the single denoising methods of EMD (1.5096 and 4.0012), EEMD (1.8248 and 4.0724), CEEMD (1.9516 and 4.3384), and WTD (1.8737 and 4.5294). This method provides a new idea for signal denoising of the impact-type sunflower yield sensor installed in the pneumatic seed delivery structure, and further provides theoretical support and technical references for the development of sunflower high-precision yield measurements in smart agriculture.
Abstract Background: Soil salinization and alkalinization are the main factors that affect the agricultural productivity. Evaluating the persistence of the compound material applied in field soils is an important part of the regulation of the responses of cotton to saline and alkaline stresses.Result: To determine the molecular effects of compound material on the cotton’s responses to saline stress and alkaline stress, cotton was planted in the salinized soil (NaCl 8g kg -1 ) and alkalized soil (Na 2 CO 3 8g kg -1 ) after application of the compound material, and ion content, physiological characteristics, and transcription of new cotton leaves at flowering and boll-forming stage were analyzed. The results showed that compared with saline stress, alkaline stress increased the contents of Na + , K + , SOD, and MDA in leaves. The application of the compound material reduced the content of Na + but increased the K + /Na + ratio , the activities of SOD, POD, and CAT, and REC. Transcriptome analysis revealed that after the application of the compound material, the Na + /H + exchanger gene in cotton leaves was down-regulated, while the K + transporter, K + channel, and POD genes were up-regulated. Besides, the down-regulation of genes related to lignin synthesis in phenylalanine biosynthesis pathway had a close relationship with the ion content and physiological characteristics in leaves. The quantitative analysis with PCR proved the reliability of the results of RNA sequencing.Conclusion: These findings suggest that the compound material alleviated saline stress and alkaline stress on cotton leaves by regulating candidate genes in key biological pathways, which improves our understanding of the molecular mechanism of the compound material regulating the responses of cotton to saline stress and alkaline stress.
Basic leucine zipper (bZIP) transcription factor plays an important role in various biological processes, such as response to biotic and abiotic stresses. In this study we performed a systematic investigation and analysis of bZIP gene family in Gossypium hirsutum to predict their functions in response to different abiotic stresses. A total of 207 bZIP genes were identified from Gossypium hirsutum genome and classified into 13 subfamilies through phylogenetic analysis, which was testified by the analysis of conserved motifs and exon-intron structures. Annotation of GHbZIPs was performed based on well-studied Arabidopsis bZIPs to speculate the gene function. RNA-seq analysis was conducted to identify the co-expressed and differentially expressed bZIPs under cold, heat, salt and PEG treatments. Promoter analysis and interaction network of GHbZIP proteins demonstrated that ABA-activated signaling pathway was pivotal in the regulation of GHbZIPs, and GHbZIPs involved in ER stress were supposed to function through interaction with other GHbZIPs and ABA pathway. Cis-elements in the upstream and downstream of GHbZIPs interaction network were also discussed. These findings provided us with clues about functions of bZIP in Gossypium hirsutum.