This study was to evaluate the cytotoxic effect in vitro and the tissue response within the rat peritoneal cavity to high copper amalgam and glass ionomer-silver cement, suggested for use as a retrograde endodontic filling material. In the cytotoxicity experiment, the radioactively () labeled L929 mouse fibroblasts were employed to determine the relative cytotoxicity of two experimental materials. Those materials were evaluated immediately after set and after one and seven days setting. In the tissue response experiment, two experimental materials were to evaluate mean peritoneal cellular count, differential cell count and the content of silver and copper in pooled packed cells and eluate samples taken by peritoneal lavage technique, and compared with surgical control after one day. two, four and six weeks of implantation. The results were as following: 1. High copper amalgam exhibited significant cytotoxicity immediately after set but showed no sign of toxicity after one day and seven days setting materials. 2. Glass ionomer-silver cement showed no sign of toxicity immediately after set and after one day and seven days setting. 3. High copper amalgam and glass ionomer-silver cement groups produce no significant difference in the mean peritoneal cell count when compared with the surgical control group after one day, two and four weeks of implantation. Surgical control group exhibited significantly a greater cell count when compared with the High copper amalgam group after six weeks. 4. High copper amalgam group increased significantly in the percentage macrophages after four and six weeks of implantation when compared with surgical control group. 5. The trace metal analysis involved an increased silver content in the elutes and an increased copper content in the packed cells of high copper amalgam group, and an increased silver content in the packed cells and elutes of glass ionomer-silver cement group.
The purpose of this study was to observe the effect of dentin surface conditioners on the dentin surfaces. Freshly extracted human molars were used in this study. They were stored at saline solution before experiment. The crown portions of the teeth were cut in various directions by means of wet diamond point to expose dentin which include transverse, vertical oblique, horizontal and oblique cut to the long axis (Fig. 1). Each tooth was then mounted with self curing acrylic resin in brass ring to expose the flattened dentin surfaces. Final finish was accomplished by grinding the dentin specimens with wet No. 180 and No. 600 grit silicon carbide abrasive paper until a 6.0mm in diameter on a dentin surface was exposed without pulp exposure. The specimens were divided into 9 groups according to the modes of dentin treatment procedure. The following surface treatments were applied on these preparation surfaces; Group 1: unetched (control group) after finish with No. 600 silicon carbide abrasive paper. Group 2: etched with 30% phosphoric acid for 60s Group 3: etched with 10-3 solution for 60s Group 4: Cleaned with 5% NaOCl for 30s Group 5: applied Dentin Adhesit Group 6: cleaned with 5% NaOCl followed by applying the Dentin Adhesit Group 7: applied Photo Bond on the unetched dentin followed by applying the Photo Clearfil Bright Group 8: Etched with 30% phosphoric acid followed by applying Photo Bond and Photo Clearfil Bright Group 9: etched with 10-3 solution followed by applying Photo Bond and Photo Clearfil Bright All the specimens were stored in under 50% relative humidity for 24 hours before observations. The specimens in 7, 8, and 9 group, omitting the group 1 to 6, were demineralized in 10% HCl for 10s in order to observe the resin tags. All the specimens in each group were then dried at room temperature. The dried specimens were ion coated with Eiko ion coater (Eiko-engineering Co.), and observed in Hitachi S-430 Scanning electron microscope (Hitachi, Co. Tokyo) at 15KV. The following results were obtained as follows; 1. The smear layers were still remained in group 1,2,4,5, and 6. 2. There is no effect of 5% NaOCl and 30% phosphoric acid on the changes of dentin morphology 3. The dentin treated with 10-3 solution, indicating the tubules opened when the smear layer and the dental plug dissolved. 4. In case of applying the bonding agents the resin tag was not formed at the deep area of dentinal tubules, but in case of applying the Dentin Adhesit that was not.
Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P and the group 5 had lowest shear bond strenght with 3.26kgf/(P
The purpose of this study was to observe the tensile and bonding strength of the joined amalgam restoration. Amalgam alloys of fine-cut (F-type), spherical (S-type), and dispersed type (D-type) were selected in this study, and all specimens were divided into three groups according to the condensation methods as follows. Group I : the control group which condense the same kinds of mixed amalgam into the whole part of the mold respectively. Group II : the group which condense a mix of amalgam into one half of the mold, and then condense a new mix of amalgam into the rest half of the mold 15 minutes later. Group III : the group which condense a mixed amalgam into one half of the mold, and then condense a new mix of amalgam into the rest half of the mold 7 days later. All specimens were stored in incubator at for seven days with immersing in saline solution before testing. The tensile and bonding strength of them were measured with Instron Universal Testing machine. The results were as follows: 1. In Group I, the order of tensile strength was F-type, S-type, and D-type. 2. In case of bonding of S-type + S-type, the difference of the bonding strength between Group II and III was not significant. (P> 0.05) 3. The bonding strength of F-type + S-type of Group II was marked the highest in value, and the lowest bonding strength was showed in bonded D-type + D-type of Group III. 4. In case of bonding with the different kinds of amalgam alloy in Group II, the specimen bonded to F-type was marked the highest bonding strength, and the specimen bonded with F-type was marked the lowest one. In Group II, the bonding strength of the specimens bonded with the same kinds of amalgam alloy was presented as the same order as that of Group I. 5. In Group III, the specimen connected with D-type marked the lowest bonding strength of all specimens. In Group III, the bonding strength of the specimens connected with the same kinds of amalgam alloy was the order of S-type + S-type, F-type + F-type, and D-type + D-type.
The responses of human pulp fibroblastic cells to Ga-As Semi-Conductor-Dens-Bio Laser (Frequency: 5 Hz~10,000 Hz Model: SD-101A RCA, U.SA)) were examined in vitro using pulp fibroblastic cells obtained from the pulp tissue of human tooth. The mitogenic effect of soft laser was assessed by measuring the MTT assay. The morphologic effect for soft laser showed under the scanning and transmission electron microscopy. The results as follows; 1. The mitogenic response of the soft laser was not observed until 4th time of radiation, while the mitogenic response at 4th time increased mitogenic effect by as much as 1.7 fold compared to the control value. 2. The mitogenic response of the soft laser on pulp fibroblast differ from the mitogenic response on other fibroblasts. 3. In scanning electron microscopic study, The microvilli of cell surface increased gradually with width and length after laser radiation, it demonstrate that development of microvilli have close connection with differentiation of cells. 4. Under the transmission electron microscope, The laser-treated cells maintained their elongated shape and a high degree of cellular polarization. The large cell body containing a well developed Golgi complex, a large number of profiles of rough endoplasmic reticulum, and great numbers of mitochondria. 5. The laser-treated cells maintained the long straight bundles of closely apposed microfilaments or individual filaments forming a cross-linked network. These findings suggest that the laser may have important roles in promotion of pulp healing and consequently may be useful for clinical application in pulp regenerative procedures.
The purpose of this study was to investigate the physical properties of experimental composite resins made with the spherical and crushed fillers. The 14 experimental composite resins containing 0, 5, 10, 15, 20 and 25%(w/w) in spherical filler group and 0, 10, 20, 30, 40, 50, 60 and 70%(w/w) in crushed filler group, incorporated in a Bis-GMA matrix (Aldrich Co., USA), were made with 1% -methoxy silane treated fillers. The polymer matrix was made by dissolving 0.7%(w/w) of benzoyl peroxide(Janssen Chemical Co. Japan) in methacrylate monomer, whereupon 0.7%(v/v) N,N-dimethyl-p-toluidine(Tokyo Kasei Co. Japan) was added to the monomer. The weight percentage of each specific particle size distribution could be determined from a knowledge of the specific gravity, the weight(w/w), and corresponding volume %(v/v) of the filler sample in resin monomer. In crushed silica group and spherical silica group, the diametral tensile strengths and compressive strengths were measured with Instron Testing Machine(No.4467), and analyzed in 14 experimental composite resins made by filler fractions. The shear bond strength of 14 experimental composite resins to bovine enamel was measured with universal testing machine(Instron No.4467). The fracture surfaces were sputter-coated with a gold film and investigated by SEM. The results were as follows; 1. The diametral tensile strength was tendency to increase in crushed silica group, but not in spherical silica group. The highest diametral tensile strength was found in 20% filler fractions of two groups. 2. The compressive strength was higher in 15%(w/w) and 20%(w/w) in spherical silica group than in crushed silica group, but not in spherical silica group. 3. The significant correlation was noticed in increase in shear bond strength in crushed silica group, but not in spherical silica group. 4. The significantly highest shear bond strength was noticed in 50% filler concentration in crushed silica group, and in 15% filler concentration in spherical silica group, it was not significant in relation. 5. In crushed silica group, cut surface of resin matrix and the interface between resin and filler is obvious. In spherical silica group, fractures that occurred through the filler particles were round in shape.
The purpose of this study was to evaluate the tensile bond strength between composite resin and the human enamel. Three composite resin systems, two chemical (Clearfil Posterior, and Clearfil Posterior-3) and one light cure (Photo Clearfil-A), used with and without an intermediate resin (clearfil bonding agent), were evaluated under different amounts of load (10g, 200g and 200g for a moment) for in vitro tensile bond strength to acid-eched human enamel. Clinically intact buccal or lingual surfaces of 144 freshly extracted human permanent molars, embedded in acrylic were flattened with No #600 carborundum discs. Samples were randomly assigned to the different materials and treatments using a table of random numbers. Eight samples were thus prepared for each group(Table 2) these surfaces were etched with an acid etchant (Kurarey Co. Japan) in a mode of etching for 30 seconds, washing for 15 seconds, and drying for 30-seconds. During the polymerization of composite resin on the acid-etched enamel surfaces with and without bonding agent 10-gram, 200 gram and temporary 200 gram of load were applied. The specimens were stored in 50% relation humidity at for 24 hours before testing. An universal Testing machine (Intesco model No. 2010, Tokyo, Japan) was used to apply tensile loads in the vertical directed (fig 5), and the force required for separation was recorded with a cross head speed of 0.25 mm/min and 20 kg in full scale. The results were as follow: 1. The tensile bond strength was much greater in applying a bonding agent than in not doing that. 2. The tensile bond strength of chemical cure composite resin was higher than that of light cure composite resin with applying on bonding agent on the acid-etched enamel. 3. In case of not applying a bonding agents on the acid-etching enamel, the highest tensile bond strength under 200 gram of load was measured in light cure composite resin. 4. The tensile bond strength under 200-gram of load has no relation with applying the bonding agent. 5. Under the load of 10-gram, There was significant difference in tensile bond strength as applying the bonding agent.