Over the past 50,000 y, biotic extinctions and declines have left a legacy of vacant niches and broken ecological interactions across global terrestrial ecosystems. Reconstructing the natural, unmodified ecosystems that preceded these events relies on high-resolution analyses of paleoecological deposits. Coprolites are a source of uniquely detailed information about trophic interactions and the behaviors, gut parasite communities, and microbiotas of prehistoric animal species. Such insights are critical for understanding the legacy effects of extinctions on ecosystems, and can help guide contemporary conservation and ecosystem restoration efforts. Here we use high-throughput sequencing (HTS) of ancient eukaryotic DNA from coprolites to reconstruct aspects of the biology and ecology of four species of extinct moa and the critically endangered kakapo parrot from New Zealand (NZ). Importantly, we provide evidence that moa and prehistoric kakapo consumed ectomycorrhizal fungi, suggesting these birds played a role in dispersing fungi that are key to NZ’s natural forest ecosystems. We also provide the first DNA-based evidence that moa frequently supplemented their broad diets with ferns and mosses. Finally, we also find parasite taxa that provide insight into moa behavior, and present data supporting the hypothesis of coextinction between moa and several parasite species. Our study demonstrates that HTS sequencing of coprolites provides a powerful tool for resolving key aspects of ancient ecosystems and may rapidly provide information not obtainable by conventional paleoecological techniques, such as fossil analyses.
Abstract Ancient DNA analysis of human oral microbial communities within calcified dental plaque (calculus) has revealed key insights into human health, paleodemography, and cultural behaviors. However, contamination imposes a major concern for paleomicrobiological samples due to their low endogenous DNA content and exposure to environmental sources, calling into question some published results. Decontamination protocols ( e.g. an ethylenediaminetetraacetic acid (EDTA) pre-digestion or ultraviolet radiation (UV) and 5% sodium hypochlorite immersion treatments) aim to minimize the exogenous content of the outer surface of ancient calculus samples prior to DNA extraction. While these protocols are widely used, no one has systematically compared them in ancient dental calculus. Here, we compare untreated dental calculus samples to samples from the same site treated with four previously published decontamination protocols: a UV only treatment; a 5% sodium hypochlorite immersion treatment; a pre-digestion in EDTA treatment; and a combined UV irradiation and 5% sodium hypochlorite immersion treatment. We examine their efficacy in ancient oral microbiota recovery by applying 16S rRNA gene amplicon and shotgun sequencing, identifying ancient oral microbiota, as well as soil and skin contaminant species. Overall, the EDTA pre-digestion and a combined UV irradiation and 5% sodium hypochlorite immersion treatment were both effective at reducing the proportion of environmental taxa and increasing oral taxa in comparison to untreated samples. This research highlights the importance of using decontamination procedures during ancient DNA analysis of dental calculus to reduce contaminant DNA.
Whether and how epigenetic mechanisms and the microbiome play a role in mammalian adaptation raised considerable attention and controversy, mainly because they have the potential to add new insights into the Modern Synthesis. Recent attempts to reconcile neo-Darwinism and neo-Lamarckism in a unified theory of molecular evolution give epigenetic mechanisms and microbiome a prominent role. However, supporting empirical data are still largely missing. Because experimental studies using extant animals can hardly be done over evolutionary timescales, we propose that advances in ancient DNA techniques provide a valid alternative. In this piece, we evaluate 1) the possible roles of epigenomes and microbiomes in animal adaptation, 2) advances in the retrieval of paleoepigenome and paleomicrobiome data using ancient DNA techniques, and 3) the plasticity of either and interactions between the epigenome and the microbiome, while emphasizing that it is essential to take both into account, as well as the underlying genetic factors that may confound the findings. We propose that advanced ancient DNA techniques should be applied to a wide range of past animals, so novel dynamics in animal evolution and adaption can be revealed.
Abstract The peopling of Sahul (the combined continent of Australia and New Guinea) represents the earliest continental migration and settlement event of solely anatomically modern humans, but its patterns and ecological drivers remain largely conceptual in the current literature. We present an advanced stochastic-ecological model to test the relative support for scenarios describing where and when the first humans entered Sahul, and their most probable routes of early settlement. The model supports a dominant entry via the northwest Sahul Shelf first, potentially followed by a second entry through New Guinea, with initial entry most consistent with 50,000 or 75,000 years ago based on comparison with bias-corrected archaeological map layers. The model’s emergent properties predict that peopling of the entire continent occurred rapidly across all ecological environments within 156–208 human generations (4368–5599 years) and at a plausible rate of 0.71–0.92 km year −1 . More broadly, our methods and approaches can readily inform other global migration debates, with results supporting an exit of anatomically modern humans from Africa 63,000–90,000 years ago, and the peopling of Eurasia in as little as 12,000–15,000 years via inland routes.
The field of paleomicrobiology—the study of ancient microorganisms—is rapidly growing due to recent methodological and technological advancements. It is now possible to obtain vast quantities of DNA data from ancient specimens in a high-throughput manner and use this information to investigate the dynamics and evolution of past microbial communities. However, we still know very little about how the characteristics of ancient DNA influence our ability to accurately assign microbial taxonomies (i.e. identify species) within ancient metagenomic samples. Here, we use both simulated and published metagenomic data sets to investigate how ancient DNA characteristics affect alignment-based taxonomic classification. We find that nucleotide-to-nucleotide, rather than nucleotide-to-protein, alignments are preferable when assigning taxonomies to DNA fragment lengths routinely identified within ancient specimens (<60 bp). We determine that deamination (a form of ancient DNA damage) and random sequence substitutions corresponding to ~100,000 years of genomic divergence minimally impact alignment-based classification. We also test four different reference databases and find that database choice can significantly bias the results of alignment-based taxonomic classification in ancient metagenomic studies. Finally, we perform a reanalysis of previously published ancient dental calculus data, increasing the number of microbial DNA sequences assigned taxonomically by an average of 64.2-fold and identifying microbial species previously unidentified in the original study. Overall, this study enhances our understanding of how ancient DNA characteristics influence alignment-based taxonomic classification of ancient microorganisms and provides recommendations for future paleomicrobiological studies.
Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored.