Currently, end-to-end (E2E) speech recognition methods have achieved promising performance. However, auto speech recognition (ASR) models still face challenges in recognizing multi-accent speech accurately. We propose a layer-adapted fusion (LAF) model, called Qifusion-Net, which does not require any prior knowledge about the target accent. Based on dynamic chunk strategy, our approach enables streaming decoding and can extract frame-level acoustic feature, facilitating fine-grained information fusion. Experiment results demonstrate that our proposed methods outperform the baseline with relative reductions of 22.1$\%$ and 17.2$\%$ in character error rate (CER) across multi accent test datasets on KeSpeech and MagicData-RMAC.
Currently, end-to-end (E2E) speech recognition methods have achieved promising performance. However, auto speech recognition (ASR) models still face challenges in recognizing multi-accent speech accurately. We propose a layer-adapted fusion (LAF) model, called Qifusion-Net, which does not require any prior knowledge about the target accent. Based on dynamic chunk strategy, our approach enables streaming decoding and can extract frame-level acoustic feature, facilitating fine-grained information fusion. Experiment results demonstrate that our proposed methods outperform the baseline with relative reductions of 22.1% and 17.2% in character error rate (CER) across multi accent test datasets on KeSpeech and MagicData-RMAC.
In the realm of DeepFake detection, the challenge of adapting to various synthesis methodologies such as Faceswap, Deepfakes, Face2Face, and NeuralTextures significantly impacts the performance of traditional machine learning models. These models often suffer from static feature representation, which struggles to perform consistently across diversely generated deepfake datasets. Inspired by the biological concept of differential gene expression, where gene activation is dynamically regulated in response to environmental stimuli, we introduce the Selective Feature Expression Network (SFE-Net). This innovative framework integrates selective feature activation principles into deep learning architectures, allowing the model to dynamically adjust feature priorities in response to varying deepfake generation techniques. SFE-Net employs a novel mechanism that selectively enhances critical features essential for accurately detecting forgeries, while reducing the impact of irrelevant or misleading cues akin to adaptive evolutionary processes in nature. Through rigorous testing on a range of deepfake datasets, SFE-Net not only surpasses existing static models in detecting sophisticated forgeries but also shows enhanced generalization capabilities in cross-dataset scenarios. Our approach significantly mitigates overfitting by maintaining a dynamic balance between feature exploration and exploitation, thus producing more robust and effective deepfake detection models. This bio-inspired strategy paves the way for developing adaptive deep learning systems that are finely tuned to address the nuanced challenges posed by the varied nature of digital forgeries in modern digital forensics.
Speech Emotion Recognition (SER) has become a growing focus of research in human-computer interaction. Spatiotemporal features play a crucial role in SER, yet current research lacks comprehensive spatiotemporal feature learning. This paper focuses on addressing this gap by proposing a novel approach. In this paper, we employ Convolutional Neural Network (CNN) with varying kernel sizes for spatial and temporal feature extraction. Additionally, we introduce Squeeze-and-Excitation (SE) modules to capture and fuse multi-scale features, facilitating effective information fusion for improved emotion recognition and a deeper understanding of the temporal evolution of speech emotion. Moreover, we employ skip-connections and Spatial Dropout (SD) layers to prevent overfitting and increase the model's depth. Our method outperforms the previous state-of-the-art method, achieving an average UAR and WAR improvement of 1.62% and 1.32%, respectively, across six benchmark SER datasets. Further experiments demonstrated that our method can fully extract spatiotemporal features in low-resource conditions.
Speech Emotion Recognition (SER) has become a growing focus of research in human-computer interaction. Spatiotemporal features play a crucial role in SER, yet current research lacks comprehensive spatiotemporal feature learning. This paper focuses on addressing this gap by proposing a novel approach. In this paper, we employ Convolutional Neural Network (CNN) with varying kernel sizes for spatial and temporal feature extraction. Additionally, we introduce Squeeze-and-Excitation (SE) modules to capture and fuse multi-scale features, facilitating effective information fusion for improved emotion recognition and a deeper understanding of the temporal evolution of speech emotion. Moreover, we employ skip connections and Spatial Dropout (SD) layers to prevent overfitting and increase the model's depth. Our method outperforms the previous state-of-the-art method, achieving an average UAR and WAR improvement of 1.62% and 1.32%, respectively, across six benchmark SER datasets. Further experiments demonstrated that our method can fully extract spatiotemporal features in low-resource conditions.