We present a computational study of terahertz optical properties of a grating-coupled plasmonic structure based on micrometer-thin InSb layers. We find two strong absorption resonances that we interpret as standing surface plasmon modes and investigate their dispersion relations, dependence on InSb thickness, and the spatial distribution of the electric field. The observed surface plasmon modes are well described by a simple theory of the air/InSb/air trilayer. The plasmonic response of the grating/InSb structure is highly sensitive to the dielectric environment and the presence of an analyte (e.g., lactose) at the InSb interface, which is promising for terahertz plasmonic sensor applications. We determine the sensor sensitivity to be 7200 nm per refractive index unit (or 0.06 THz per refractive index unit). The lower surface plasmon mode also exhibits a splitting when tuned in resonance with the vibrational mode of lactose at 1.37 THz. We propose that such interaction between surface plasmon and vibrational modes can be used as the basis for a new sensing modality that allows the detection of terahertz vibrational fingerprints of an analyte.
Transition metal selenides have garnered considerable attention in the field of electrocatalytic oxygen evolution reaction (OER). However, their OER performances still lag behind those of Ir-based materials due to limited exposed active sites, inefficient electron transfer and inadequate stability. In this study, we have successfully synthesized nitrogen-doped NiSe2 nanosheets, which exhibit high efficiency and long-term stability for the OER, requiring only 320 mV to reach a current density of 10 mA cm−2. The nitrogen doping plays a crucial role in effectively regulating the work function and semiconductor characteristics of NiSe2, which facilitates the electron transport and optimizes the catalytic sites. Furthermore, the NiSe2 nanosheets present a larger surface area with more exposed active sites, thus resulting in exceptional OER catalytic activity. The nitrogen-doped NiSe2 nanosheets also display superior stability, maintaining a sustained current density throughout an 8-h OER operation.
The effects of Rh doping on the structural, magnetic, electrical, and thermal transport properties of Ca3Co4–xRhxO9 (0 ≤ x ≤ 0.4) samples have been investigated systematically. XRD and XPS results show that the doped Rh ions are in the form of Rh3+. Only a metal–insulator transition (MIT) and an anomaly of the slope related to the transition from a Fermi liquid to an incoherent metal at low temperatures were observed in the resistivity curve for the undoped sample. As Rh ions were doped into the samples, an additional anomaly and MIT occurred in the resistivity curve near room temperature, which are suggested to originate from the spin-state transition (SST) of Co ions. The low-temperature MIT temperature increased with increasing Rh-doping content, indicating that the spin-density-wave state became stable as a result of the enhanced random Coulomb potential in CoO2 octahedral block layers induced by Rh substitution. Based on an analysis of the thermopower and XPS data, Rh3+ ions are suggested to substitute at the Co3+ sites of CoO2 layers. The substitution induced a partial SST of Co4+ ions from the low-spin to the high-spin state, leading to the formation of a spin-state polaron. The evolution of the electrical and magnetic properties with Rh doping is summarized in a single phase diagram for Ca3Co4–xRhxO9. It should be noted that the thermopower of the system did not change obviously with Rh doping, but the thermal conductivity decreased significantly. As a result, the ZT value increased markedly with increasing Rh-doping content. The ZT value at room temperature for Ca3Co3.6Rh0.4O9 reached 0.014, which is about 2.4 times larger than that of Ca3Co4O9. The results show that Rh doping might be an effective route to improving the thermoelectric performance of the Ca3Co4O9 system.
The aberrant up-regulation of meiotic nuclear division 1 (MND1) in somatic cells is considered as one of the driving factors of oncogenesis, whereas its expression and role in breast invasive cancer (BRCA) remain unclear. Hence, this study embarked on a comprehensive evaluation of MND1 across various cancers and identified its roles in BRCA. Based on publicly available databases, including but not limited to UCSC Xena, TCGA, GTEx, GEO, STRING, GeneMANIA, and CancerSEA, we evaluated the expression patterns, genomic features, and biological functions of MND1 from a pan-cancer viewpoint and delved into the implications of MND1 in the prognosis and treatment of BRCA. Further molecular biology experiments were undertaken to identify the role of MND1 in proliferation, migration, and apoptosis in BRCA cells. Elevated levels of MND1 were notably observed in a wide array of tumor types, especially in BRCA, COAD, HNSC, LIHC, LUAD, LUSC, STAD, and UCEC. Elevated MND1 expression was markedly associated with shortened OS in several tumors, including BRCA (HR = 1.52 [95%CI, 1.10–2.09], P = 0.011). The up-regulation of MND1 in BRCA was validated in external cohorts and clinical samples. Survival analyses demonstrated that elevated MND1 expression was associated with decreased survival for patients with BRCA. Co-expressed genes of MND1 were identified, and subsequent pathway analyses based on significantly associated genes indicated that MND1 plays key roles in DNA replication, cell cycle regulation, and DNA damage repair. The observed abnormal elevation and activation of MND1 led to increased proliferation and migration, along with decreased apoptosis in BRCA cells. MND1 emerges as a promising biomarker for diagnostic and therapeutic targeting in various cancers, including BRCA. The abnormal up-regulation and activation of MND1 are linked to carcinogenesis and poor prognosis among BRCA patients, which may be attributed to its involvement in HR-dependent ALT, warranting further scrutiny.
MnM′X (M′ = Co, Ni; X = Ge, Si, etc.) alloys usually present a large volumetric change during the Martensitic (MA) transformation. This offers a great opportunity for exploring new negative thermal expansion (NTE) materials if the temperature interval of NTE can be extended. Here, we report colossal NTE in fine-powdered Mn0.98CoGe prepared by repeated thermal cycling (TC) through the MA transition or ball milling. Both treatments can expand the MA transformation, and thus broaden the NTE temperature window (ΔT). For the powders that have gone through TC for ten times, ΔT reaches 90 K (309 K–399 K), and the linear expansion coefficient (αL) is about −141 ppm/K, which rank among the largest values of colossal NTE materials. The difference between two kinds of treatments and the possible mechanisms of the extended MA transformation window are discussed based on the introduced strain.
Abstract Aqueous zinc‐ion batteries (AZIBs) are considered to be a rising star in the large‐scale energy storage area because of their low cost and environmental friendliness properties. However, the limited electrochemical performance of the cathode and severe zinc dendrite of the anode severely hinder the practical application of AZIBs. Herein, a novel 3D interconnected VS 2 ⊥V 4 C 3 T x heterostructure material is prepared via one‐step solvothermal method. Morphological and structural characterizations show that VS 2 nanosheets are uniformly and dispersedly distributed on the surface of the V 4 C 3 MXene substrate, which can effectively suppress volume change of the VS 2 . Owing to the open heterostructure along with the high conductivity of V 4 C 3 MXene, the VS 2 ⊥V 4 C 3 T x cathode shows a high specific capacity of 273.9 mAh g −1 at 1 A g −1 and an excellent rate capability of 143.2 mAh g −1 at 20 A g −1 . The V 4 C 3 MXene can also effectively suppress zinc dendrite growth when used as protective layer for the Zn anode, making the V 4 C 3 T x @Zn symmetric cell with a stable voltage profile for ≈1700 h. Benefitting from the synergistic modification effect of V 4 C 3 MXene on both the cathode and anode, the VS 2 ⊥V 4 C 3 T x ||V 4 C 3 T x @Zn battery exhibits a long cycling lifespan of 5000 cycles with a capacity of 157.1 mAh g −1 at 5A g −1 .
The coaxial electrospun fibers with large specific surface area, high porosity and core-shell structure have been great applied in biomedical field, especially as drug delivery carriers. In this paper, PLGA(polylactic acid/glycolic acid copolymer) was used as the core and the mixture of PLGA and gelatin was used as the shell. PLGA/gelatin fiber was prepared by coaxial electrospinning technology. The effects of different parameters on the surface morphology and the diameter of fibers were investigated.
Layered double hydroxides (LDHs) with outstanding redox activity on flexible current collectors can serve as ideal cathode materials for flexible hybrid supercapacitors in wearable energy storage devices. Electrodeposition is a facile, time-saving, and economical technique to fabricate LDHs. The limited loading mass induced by insufficient mass transport and finite exposure of active sites, however, greatly hinders the improvement of areal capacity. Herein, magneto-electrodeposition (MED) under high magnetic fields up to 9 T is developed to fabricate NiCo-LDH on flexible carbon cloth (CC) as well as Ti3 C2 Tx functionalized CC. Owing to the magneto-hydrodynamic effect induced by magnetic-electric field coupling, the loading mass and exposure of active sites are significantly increased. Moreover, a 3D cross-linked nest-like microstructure is constructed. The MED-derived NiCo-LDH delivers an ultrahigh areal capacity of 3.12 C cm-2 at 1 mA cm-2 and as-fabricated flexible hybrid supercapacitors show an excellent energy density with an outstanding cycling stability. This work provides a novel route to improve electrochemical performances of layered materials through MED technique.