Galanin (GAL) is a nociceptive transmitter or modulator in the trigeminal sensory system. In this study, GAL expression was investigated in the rat dura mater to demonstrate its possible function in headache using immunohistochemical techniques. The cerebral falx and cerebellar dura mater received abundant blood and nerve supply, and were significantly thicker compared to other portions in the cerebral dura mater. GAL-immunoreactivity was expressed by cell and nerve fiber profiles. Presumed macrophages and dendritic cells contained GAL-immunoreactivity, and co-expressed with CD11b-immunoreactivity. Many isolated and perivascular nerve fibers also showed GAL-immunoreactivity. In addition, GAL-immunoreactive nerve fibers were present in the vicinity of macrophages and dendritic cells with either GAL- or ED1-immunoreactivity. GAL-immunoreactive cells and nerve fibers were common in the cerebral falx and cerebellar dura mater and infrequent in other portions. And, GAL-immunoreactive nerve fibers usually co-expressed calcitonin gene-related peptide (CGRP)-immunoreactivity. In the trigeminal ganglion, a substantial proportion of sensory neurons innervating the dura mater contained GAL-immunoreactivity (mean ± SD, 3.4 ± 2.2%), and co-expressed CGRP-immunoreactivity (2.7 ± 2.1%). The present study may suggest that GAL is associated with nociceptive transduction or modulation in the dura mater. GAL also possibly plays a role in the immune mechanism of the dura mater.
Distribution of endomorphin-1 (EM-1) was immunohistochemically investigated in the rat cranial sensory ganglia. Small to medium-sized neurons in the trigeminal (TG), petrosal (PG), and jugular ganglia (JG) expressed EM-1-immunoreactivity. However, EM-1-immunoreactive (-ir) neurons were infrequent in the nodose ganglion. In the brainstem, EM-1-ir varicose fibers were detected in the superficial layer of the medullary dorsal horn and the caudal part of the nucleus tractus solitarius. By trichrome immunofluorescence analysis, approximately 70% of EM-1-ir neurons were also immunoreactive for transient receptor potential vanilloid 1 (TRPV1) in all the examined ganglia. Additionally, 56.8% of EM1-ir TG neurons and approximately 30% of EM-1-ir PG and JG neurons showed calcitonin gene-related peptide (CGRP)-immunoreactivity. By a retrograde tracing method, several TG, PG, and JG neurons innervating the facial and external ear canal skin expressed EM-1-immunoreactivity. However, EM-1-ir neurons innervating the tooth pulp, circumvallate papilla, and pharynx were relatively rare. Thus, EM-1 expression and its coexistence with TRPV1 and CGRP in the cranial sensory neurons may depend on their various peripheral targets. EM1-ir neurons probably project to the superficial layer of the medullary dorsal horn and caudal part of the nucleus tractus solitarius. EM-1 may be involved in nociceptive transmission from the skin.
Reduction of critical dimension in lithography technology is aggressively promoted. At the same time, further resist thickness reduction is being pursued to increase the resolution capabilities of resist. However, thin film has its limitation because of etch requirements etc. As that result, the promotion of reduction results in increasing the aspect ratio, which leads to pattern collapse. It is well known that at drying step in developing process the capillary effect operates the photoresist pattern. If the force of the capillary effect is greater than the aggregation force of the resist pattern, the pattern collapse is generated. And the key parameters of the capillary effect are the space width between patterns, the aspect ratio, the contact angle of the D.I water rinse and the surface tension of rinse solution. Among these parameters the surface tension of rinse solution can be controlled by us. On the other hand, we've already reported that the penetration of TMAH and D.I water into the resist plays an important role on the lithographic latitude. For example, when we use the resist which TMA ion can be easily diffuse into, D.I water and TMA ion which are penetrated in the resist decreases the aggregation force of resist pattern and causes the pattern collapse even by the weak force against resist pattern. These results indicate that the swelling of photoresist by TMA ion and water is very important factor for controlling the pattern collapse. Currently, two methods are mainly tried to reduce the surface tension of rinse solution: SCF (Super Critical Fluid) and addition of additive to D.I water rinse. We used the latter method this time, because this technique has retrofittability and not special tool. And in this evaluation, we found that the degree of suppressing pattern collapse depends on the additive chemistry or formulation. With consideration given to process factors such as above, we investigated what factors contribute to suppressing pattern collapse for each resist platform when using additive-added rinse solutions. This report describes the results of our examinations and discussions of the pattern collapse mechanism.