Mortality from COVID-19 is high among hospitalized patients and effective therapeutics are lacking. Hypercoagulability, thrombosis and hyperinflammation occur in COVID-19 and may contribute to severe complications. Therapeutic anticoagulation may improve clinical outcomes through anti-thrombotic, anti-inflammatory and anti-viral mechanisms. Our primary objective is to evaluate whether therapeutic-dose anticoagulation with low-molecular-weight heparin or unfractionated heparin prevents mechanical ventilation and/or death in patients hospitalized with COVID-19 compared to usual care.An international, open-label, adaptive randomized controlled trial. Using a Bayesian framework, the trial will declare results as soon as pre-specified posterior probabilities for superiority, futility, or harm are reached. The trial uses response-adaptive randomization to maximize the probability that patients will receive the more beneficial treatment approach, as treatment effect information accumulates within the trial. By leveraging a common data safety monitoring board and pooling data with a second similar international Bayesian adaptive trial (REMAP-COVID anticoagulation domain), treatment efficacy and safety will be evaluated as efficiently as possible. The primary outcome is an ordinal endpoint with three possible outcomes based on the worst status of each patient through day 30: no requirement for invasive mechanical ventilation, invasive mechanical ventilation or death.Using an adaptive trial design, the Anti-Thrombotic Therapy To Ameliorate Complications of COVID-19 trial will establish whether therapeutic anticoagulation can reduce mortality and/or avoid the need for mechanical ventilation in patients hospitalized with COVID-19. Leveraging existing networks to recruit sites will increase enrollment and mitigate enrollment risk in sites with declining COVID-19 cases.
Patients hospitalized for COVID-19 are at high risk of thrombotic complications and organ failure, and often exhibit severe inflammation, which may contribute to hypercoagulability.
Thrombosis and inflammation may contribute to morbidity and mortality among patients with coronavirus disease 2019 (Covid-19). We hypothesized that therapeutic-dose anticoagulation would improve outcomes in critically ill patients with Covid-19.
IntroductionCoronavirus disease (COVID‐19) is associated with a high incidence of thrombosis and mortality despite standard anticoagulant thromboprophylaxis. There is equipoise regarding the optimal dose of anticoagulant intervention in hospitalized patients with COVID‐19 and consequently, immediate answers from high‐quality randomized trials are needed.MethodsThe World Health Organization's International Clinical Trials Registry Platform was searched on June 17, 2020 for randomized controlled trials comparing increased dose to standard dose anticoagulant interventions in hospitalized COVID‐19 patients. Two authors independently screened the full records for eligibility and extracted data in duplicate.ResultsA total of 20 trials were included in the review. All trials are open label, 5 trials use an adaptive design, 1 trial uses a factorial design, 2 trials combine multi‐arm parallel group and factorial designs in flexible platform trials, and at least 15 trials have multiple study sites. With individual target sample sizes ranging from 30 to 3000 participants, the pooled sample size of all included trials is 12 568 participants. Two trials include only intensive care unit patients, and 10 trials base patient eligibility on elevated D‐dimer levels. Therapeutic intensity anticoagulation is evaluated in 14 trials. All‐cause mortality is part of the primary outcome in 14 trials.DiscussionSeveral trials evaluate different dose regimens of anticoagulant interventions in hospitalized patients with COVID‐19. Because these trials compete for sites and study participants, a collaborative effort is needed to complete trials faster, conduct pooled analyses and bring effective interventions to patients more quickly.
The role of remdesivir in the treatment of hospitalized patients with COVID-19 remains ill-defined. We conducted a cost-effectiveness analysis alongside the Canadian Treatments for COVID-19 (CATCO) open-label, randomized clinical trial evaluating remdesivir.
Methods:
Patients with COVID-19 in Canadian hospitals from Aug. 14, 2020, to Apr. 1, 2021, were randomly assigned to receive remdesivir plus usual care versus usual care alone. Taking a public health care payer's perspective, we collected in-hospital outcomes and health care resource utilization alongside estimated unit costs in 2020 Canadian dollars over a time horizon from randomization to hospital discharge or death. Data from 1281 adults admitted to 52 hospitals in 6 Canadian provinces were analyzed.
Results:
The total mean cost per patient was $37 918 (standard deviation [SD] $42 413; 95% confidence interval [CI] $34 617 to $41 220) for patients randomly assigned to the remdesivir group and $38 026 (SD $46 021; 95% CI $34 480 to $41 573) for patients receiving usual care (incremental cost −$108 [95% CI −$4953 to $4737], p > 0.9). The difference in proportions of in-hospital deaths between remdesivir and usual care groups was −3.9% (18.7% v. 22.6%, 95% CI −8.3% to 1.0%, p = 0.09). The difference in proportions of incident invasive mechanical ventilation events between groups was −7.0% (8.0% v. 15.0%, 95% CI −10.6% to −3.4%, p = 0.006), whereas the difference in proportions of total mechanical ventilation events between groups was −5.7% (16.4% v. 22.1%, 95% CI −10.0% to −1.4%, p = 0.01). Remdesivir was the dominant intervention (but only marginally less costly, with mildly lower mortality) with an incalculable incremental cost effectiveness ratio; we report results of incremental costs and incremental effects separately. For willingness-to-pay thresholds of $0, $20 000, $50 000 and $100 000 per death averted, a strategy using remdesivir was cost-effective in 60%, 67%, 74% and 79% of simulations, respectively. The remdesivir costs were the fifth highest cost driver, offset by shorter lengths of stay and less mechanical ventilation.
Interpretation:
From a health care payer perspective, treating patients hospitalized with COVID-19 with remdesivir and usual care appears to be preferrable to treating with usual care alone, albeit with marginal incremental cost and small clinical effects. The added cost of remdesivir was offset by shorter lengths of stay in the intensive care unit and less need for ventilation.
Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited.
Objective
To determine whether hydrocortisone improves outcome for patients with severe COVID-19.
Design, Setting, and Participants
An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020.
Interventions
The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108).
Main Outcomes and Measures
The primary end point was organ support–free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned –1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%).
Results
After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support–free days were 0 (IQR, –1 to 15), 0 (IQR, –1 to 13), and 0 (–1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support–free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively.
Conclusions and Relevance
Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support–free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions.
[Voir la version anglaise de l’article ici: www.cmaj.ca/lookup/doi/10.1503/cmaj.220189][1] La COVID-19 est associée à une hypercoagulabilité et à une atteinte endothéliale qui exacerbent les risques de thrombose macro-et microvasculaire, de progression de la maladie et de décès[1][2].
Abstract Background Thrombosis may contribute to morbidity and mortality in Covid-19. We hypothesized that therapeutic anticoagulation would improve outcomes in critically ill patients with Covid-19. Methods We conducted an open-label, adaptive, multiplatform, randomized, clinical trial. Patients with severe Covid-19, defined as the requirement for organ support with high flow nasal cannula, non-invasive ventilation, invasive ventilation, vasopressors, or inotropes, were randomized to receive therapeutic anticoagulation with heparin or pharmacological thromboprophylaxis as per local usual care. The primary outcome was an ordinal scale combining in-hospital mortality (assigned –1) and days free of organ support to day 21. Results Therapeutic anticoagulation met the pre-defined criteria for futility in patients with severe Covid-19. The primary outcome was available for 1,074 participants (529 randomized to therapeutic anticoagulation and 545 randomized to usual care pharmacological thromboprophylaxis). Median organ support-free days were 3 days (interquartile range –1, 16) in patients assigned to therapeutic anticoagulation and 5 days (interquartile range –1, 16) in patients assigned to usual care pharmacological thromboprophylaxis (adjusted odds ratio 0.87, 95% credible interval (CrI) 0.70-1.08, posterior probability of futility [odds ratio<1.2] 99.8%). Hospital survival was comparable between groups (64.3% vs. 65.3%, adjusted odds ratio 0.88, 95% CrI 0.67-1.16). Major bleeding occurred in 3.1% of patients assigned to therapeutic anticoagulation and 2.4% of patients assigned to usual care pharmacological thromboprophylaxis. Conclusions In patients with severe Covid-19, therapeutic anticoagulation did not improve hospital survival or days free of organ support compared to usual care pharmacological thromboprophylaxis. Trial registration numbers NCT02735707 , NCT04505774 , NCT04359277 , NCT04372589