We describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. The catalogue contains 1227 entries, making it over six times the size of the Planck Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of which 178 have been confirmed as clusters, mostly through follow-up observations, and a further 683 are previously-known clusters. The remaining 366 have the status of cluster candidates, and we divide them into three classes according to the quality of evidence that they are likely to be true clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue, with redshifts up to about one, and spans the broadest cluster mass range from (0.1 to 1.6) × 1015 M⊙. Confirmation of cluster candidates through comparison with existing surveys or cluster catalogues is extensively described, as is the statistical characterization of the catalogue in terms of completeness and statistical reliability. The outputs of the validation process are provided as additional information. This gives, in particular, an ensemble of 813 cluster redshifts, and for all these Planck clusters we also include a mass estimated from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton parameter for the clusters with X-ray counter-parts is provided, as is an X-ray flux for all the Planck clusters not previously detected in X-ray surveys.
This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27-77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch, the commissioning, calibration, performance, and verification phases will be completed, after which Planck will begin its operational life, in which LFI will have an integral part.
We describe the detection, interpretation, and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). There are two types of interactions: heating of the 0.1 K bolometer plate; and glitches in each detector time stream. The transientresponses to detector glitch shapes are not simple single-pole exponential decays and fall into three families. The glitch shape for each family has been characterized empirically in flight data and these shapes have been used to remove glitches from the detector time streams. The spectrum of the count rate per unit energy is computed for each family and a correspondence is made to the location on the detector of the particle hit. Most of the detected glitches are from Galactic protons incident on the die frame supporting the micro-machined bolometric detectors. In the Planck orbit at L2, the particle flux is around 5 cm-2 s-1 and is dominated by protons incident on the spacecraft with energy >39 MeV, at a rate of typically one event per second per detector. Different categories of glitches have different signatures in the time stream. Two of the glitch types have a low amplitude component that decays over nearly 1 s. This component produces excess noise if not properly removed from the time-ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch subtraction method removes excess noise from the time streams. Using realistic simulations, we find that this method does not introduce signal bias into the Planck data.
About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.
Planck has observed the entire sky from 30 GHz to 857 GHz. The observed foreground emission contains contributions from different phases
of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular
and ionised) in each of a number of Galactocentric rings. This technique provides the necessary information to study dust properties (emissivity,
temperature, etc.), as well as other emission mechanisms as a function of Galactic radius. Templates are created for various Galactocentric radii
using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by
free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the
above templates, namely “dark gas”, as evidenced using Planck data, is included as an additional template, the first time such a component has
been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as with higher frequency data from
IRAS and DIRBE along with radio data at 1.4 GHz. The emission per column density of the gas templates allows us to create distinct spectral
energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12 μm). The resulting SEDs
allow us to explore the contribution of various emission mechanisms to the Planck signal. Apart from the thermal dust and free-free emission, we
have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We find the dust opacity in the solar neighbourhood,
τ/NH = 0.92±0.05×10−25 cm2 at 250 μm, with no significant variation with Galactic radius, even though the dust temperature is seen to vary from
over 25 K to under 14 K. Furthermore, we show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout
the Galactic disk. Anomalous emission is not clearly detected in the ionised phase, as free-free emission is seen to dominate. The derived dust
propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous
emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for (25 ± 5)%
(statistical) of the total emission at 30 GHz.
The updated Planck catalogue of SZ sources is available at PLA (http://www.sciops.esa.int/index.php?page= Planck Legacy Archive&project=planck) and the SZ cluster database (http://szcluster-db.ias.u-psud.fr). The updated PSZ1 gathers in a single table all the entries of the delivered catalogue mainly based on the Planck data and the entries of the external validation information based on ancillary data (Appendices B and C of Planck Collaboration et al. (2014A&A...571A..29P, Cat. VIII/91), respectively). It also contains additional entries. The updated catalogue contains, when available, cluster external identifications8 and consolidated redshifts. We added two new entries: the redshift type and the bibliographic reference. (2 data files).
We present an analysis of Planck satellite data on the Coma Cluster observed via the Sunyaev-Zeldovich effect. Planck is able, for the first time, to detect SZ emission up to r ~ 3 X R_500. We test previously proposed models for the pressure distribution in clusters against the azimuthally averaged data. We find that the Arnaud et al. universal pressure profile does not fit Coma, and that their pressure profile for merging systems provides a good fit of the data only at rR_500 than the mean pressure profile predicted by the simulations. The Planck image shows significant local steepening of the y profile in two regions about half a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and indeed the western feature was previously noticed in the ROSAT PSPC mosaic as well as in the radio. Using Planck y profiles extracted from corresponding sectors we find pressure jumps of 4.5+0.4-0.2 and 5.0+1.3-0.1 in the west and southeast, respectively. Assuming Rankine-Hugoniot pressure jump conditions, we deduce that the shock waves should propagate with Mach number M_w=2.03+0.09-0.04 and M_se=2.05+0.25-0.02 in the West and Southeast, respectively. Finally, we find that the y and radio-synchrotron signals are quasi-linearly correlated on Mpc scales with small intrinsic scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields fall off much more slowly with radius than previously thought.
Planck’s all-sky surveys at 30−857 GHz provide an unprecedented opportunity to follow the radio spectra of a large sample of extragalactic
sources to frequencies 2−20 times higher than allowed by past, large-area, ground-based surveys. We combine the results of the Planck Early
Release Compact Source Catalog (ERCSC) with quasi-simultaneous ground-based observations as well as archival data at frequencies below or
overlapping Planck frequency bands, to validate the astrometry and photometry of the ERCSC radio sources and study the spectral features shown
in this new frequency window opened by Planck. The ERCSC source positions and flux density scales are found to be consistent with the groundbased
observations. We present and discuss the spectral energy distributions of a sample of “extreme” radio sources, to illustrate the richness of the
ERCSC for the study of extragalactic radio sources. Variability is found to play a role in the unusual spectral features of some of these sources.
A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk and White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y500) and the scale radius (θ500) of each cluster. Our resulting constraints in the Y500 − θ500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.
Using Planck maps of six regions of low Galactic dust emission with a total area of about 140 deg2, we determine the angular power spectra of
cosmic infrared background (CIB) anisotropies from multipole l = 200 to l = 2000 at 217, 353, 545 and 857 GHz. We use 21-cm observations of
Hi as a tracer of thermal dust emission to reduce the already low level of Galactic dust emission and use the 143 GHz Planck maps in these fields
to clean out cosmic microwave background anisotropies. Both of these cleaning processes are necessary to avoid significant contamination of the
CIB signal. We measure correlated CIB structure across frequencies. As expected, the correlation decreases with increasing frequency separation,
because the contribution of high-redshift galaxies to CIB anisotropies increases with wavelengths. We find no significant difference between the
frequency spectrum of the CIB anisotropies and the CIB mean, with ∆I/I=15% from 217 to 857 GHz. In terms of clustering properties, the
Planck data alone rule out the linear scale- and redshift-independent bias model. Non-linear corrections are significant. Consequently, we develop
an alternative model that couples a dusty galaxy, parametric evolution model with a simple halo-model approach. It provides an excellent fit to
the measured anisotropy angular power spectra and suggests that a different halo occupation distribution is required at each frequency, which
is consistent with our expectation that each frequency is dominated by contributions from different redshifts. In our best-fit model, half of the
anisotropy power at l=2000 comes from redshifts z 2 at 353
and 217 GHz, respectively.