Composite waveplates (CWs) consisting of multiple single waveplates are basic polarization elements and widely used to manipulate the polarized light in optical systems, and their performances affect the final accuracy and precision significantly. This research proposes a method for the comprehensive characterization of an arbitrary CW based on spectroscopic Mueller matrix polarimetry. An analytical model is established to describe a general CW by extending Jones' equivalent theorem with Mueller matrix calculus. In this model, an arbitrary CW is optically equivalent to a cascaded system consisting of a linear retarder with slight diattenuation followed by an optical rotator, and its polarization properties are completely described by four polarization parameters, including the retardance, the fast axis azimuth, the rotation angle, and the diattenuation angle. Analytical relations between the polarization properties, the structure, and the Mueller matrix of the CW are then derived from the established model. By the proposed method, the polarization parameters of an arbitrary CW can be comprehensively characterized over an ultra-wide spectral range via only one measurement. Moreover, the actual structure of the CW, including the thicknesses and fast axis azimuths of the single waveplates, as well as the axis alignment errors, can be completely reconstructed from the polarization spectra. Experiments performed with a house-developed broadband Mueller matrix polarimeter on three typical CWs including a compound zero-order waveplate, an achromatic waveplate and a specially designed biplate have demonstrated the capability of the proposed method.
Nonuniform depolarization properties of ${\text{SiO}_2}$SiO2 thin film, two-dimensional (2D) Si grating, and three-dimensional Si cylinder grating, were systematically investigated by Lu-Chipman decomposition. We find that introducing surface profiles with dimensions comparable to the detecting wavelengths can lead to obvious nonuniform depolarization, and control of the sample azimuth can manipulate the uniformity of the depolarizer components. The results indicate that the 2D nanostructure shows obvious nonuniform depolarization at 0° and 90° azimuths, while almost uniform depolarization at 45° azimuth. These discovered phenomena may give rise to some potential applications, such as the detection of the existence of nanostructures without a priori information about the sample, and the design of a uniform or nonuniform depolarizer.
We derive explicit power dissipation functions for stratified anisotropic OLEDs based on a radiation model of dipole antennas inside anisotropic microcavity. The dipole field expressed by vector potential is expanded into plane waves whose coefficients are determined by scattering matrix method, and then an explicit expression is derived to calculate the energy flux through arbitrary interfaces. Taking advantage of the formulation, we can easily perform quantitative analysis on outcoupling characteristics of stratified anisotropic OLEDs, including outcoupling efficiency, normalized decay rate and angular emission profile. Simulations are carried out on a prototypic stratified OLED structure to verify the validity and capability of the proposed model. The dependencies of the outcoupling characteristics on various emission feature parameters, including dipole position, dipole orientation, and the intrinsic radiative quantum efficiency, are comprehensively evaluated and discussed. Results demonstrate that the optical anisotropy in different organic layers has nonnegligible influences on the far-field angular emission profile as well as outcoupling efficiency, and thereby highlight the necessity of our method. The proposed model can be expected to guide the optimal design of stratified anisotropic OLED devices, and help to solve the inverse outcoupling problem for determining the emission feature parameters.
Wearable devices equipped with soft sensors provide a promising solution for body movement monitoring. Specifically, body movements like elbow flexion can be captured by monitoring the stretched soft sensors' resistance changes. However, in addition to stretching, the resistance of a soft sensor is also influenced by its aging, which makes the resistance a less stable indicator of the elbow angle. In this paper, we leverage the recent progress in Deep Learning and address the aforementioned issue by formulating the aging-invariant prediction of elbow angles as a domain adaption problem. Specifically, we define the soft sensor data ( i.e. , resistance values) collected at different aging levels as different domains and adapt a regression neural network among them to learn domain-invariant features. However, unlike the popular pairwise domain adaptation problem that only involves one source and one target domain, ours is more challenging as it has "infinite" target domains due to the non-stop aging. To address this challenge, we novelly propose an output-level domain adaptation approach which builds on the fact that the elbow angles are in a fixed range regardless of aging. Experimental results show that our method enables robust and accurate prediction of elbow angles with aging soft sensors, which significantly outperforms supervised learning ones that fail to generalize to aged sensor data.
As a kind of biocompatible material with long history, silk fibroin is one of the ideal platforms for on-skin and implantable electronic devices, especially for self-powered systems. In this work, to solve the intrinsic brittleness as well as poor chemical stability of pure silk fibroin film, mesoscopic doping of regenerated silk fibroin is introduced to promote the secondary structure transformation, resulting in huge improvement in mechanical flexibility (∼250% stretchable and 1000 bending cycles) and chemical stability (endure 100 °C and 3–11 pH). Based on such doped silk film (SF), a flexible, stretchable and fully bioabsorbable triboelectric nanogenerator (TENG) is developed to harvest biomechanical energy in vitro or in vivo for intelligent wireless communication, for example, such TENG can be attached on the fingers to intelligently control the electrochromic function of rearview mirrors, in which the transmittance can be easily adjusted by changing contact force or area. This robust TENG shows great potential application in intelligent vehicle, smart home and health care systems.