Without a personal assistant or a trained dog, it is difficult and somehow risky for visually impaired individuals to navigate indoors and outdoors. Navigation for individuals with visual impairment is now an active area of research, and numerous systems have been created. Developing a reliable and robust system will give the visually impaired more awareness about their surroundings, provides more independence in their lives, and reduces the risks they might face. This paper proposes the design and implementation of a prototype for a wearable system that enables blind and visually impaired individuals to navigate easily and safely by using computer vision and deep learning to identify objects and sensors to detect obstacles. Using an attached camera, the system uses image processing to recognize objects around the user. It identifies the objects based on a trained deep learning dataset and audibly communicates the object names to the user. Ultrasonic sensors detect nearby obstructions and alert the user by vibrating. Upon request, a Global Positioning System (GPS) receiver transmits the user's location via Short Message Service (SMS) to a caregiver. All the sensors and devices are connected to and controlled by an Arduino Mega microcontroller that has been programmed with efficient and dependable algorithms to perform tasks precisely and rapidly. Object recognition and reading are performed using a computer equipped with the necessary MATLAB software and libraries.
Global Positioning System (GPS) has been widely used worldwide for a variety of applications such as air, land and sea. The GPS and the Russian GLONASS are the only fully operational Global Navigation Satellite System (GNSS). Due to its several advantages, such as simplicity of use, successful implementation and global availability, this has been considered as the cornerstone of positioning in navigation system applications for the people who are visually impaired. However, due to standalone single frequency service, the positioning performance has not been sufficient for some accuracy and precision demanding applications. The problems of obtaining high accuracy real time positions in the field have led the navigation community to develop a GNSS augmentation system. However, several questions have been raised with this new development, such as how good the new method is? During any satellite configuration, would it be able to provide the accuracy at the same level? In a reliable way, would it be able to replace conventional GPS method? In this paper, a detailed review of all necessary understandings concerning GNSS and with a focal point on the GPS, GLONASS, Galileo, Beidou and GNSS augmentation systems positioning performance, is provided. The enormous demand to further improve positioning, navigation, and timing capabilities for both civil and military users on existing GNSS systems has directed efforts to modernise the GPS and GLONASS system and introduce new systems such as Galileo navigation system.
The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden.
Objective
To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019.
Evidence Review
The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs).
Findings
In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles.
Conclusions and Relevance
The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.
BackgroundHearing loss affects access to spoken language, which can affect cognition and development, and can negatively affect social wellbeing. We present updated estimates from the Global Burden of Disease (GBD) study on the prevalence of hearing loss in 2019, as well as the condition's associated disability.MethodsWe did systematic reviews of population-representative surveys on hearing loss prevalence from 1990 to 2019. We fitted nested meta-regression models for severity-specific prevalence, accounting for hearing aid coverage, cause, and the presence of tinnitus. We also forecasted the prevalence of hearing loss until 2050.FindingsAn estimated 1·57 billion (95% uncertainty interval 1·51–1·64) people globally had hearing loss in 2019, accounting for one in five people (20·3% [19·5–21·1]). Of these, 403·3 million (357·3–449·5) people had hearing loss that was moderate or higher in severity after adjusting for hearing aid use, and 430·4 million (381·7–479·6) without adjustment. The largest number of people with moderate-to-complete hearing loss resided in the Western Pacific region (127·1 million people [112·3–142·6]). Of all people with a hearing impairment, 62·1% (60·2–63·9) were older than 50 years. The Healthcare Access and Quality (HAQ) Index explained 65·8% of the variation in national age-standardised rates of years lived with disability, because countries with a low HAQ Index had higher rates of years lived with disability. By 2050, a projected 2·45 billion (2·35–2·56) people will have hearing loss, a 56·1% (47·3–65·2) increase from 2019, despite stable age-standardised prevalence.InterpretationAs populations age, the number of people with hearing loss will increase. Interventions such as childhood screening, hearing aids, effective management of otitis media and meningitis, and cochlear implants have the potential to ameliorate this burden. Because the burden of moderate-to-complete hearing loss is concentrated in countries with low health-care quality and access, stronger health-care provision mechanisms are needed to reduce the burden of unaddressed hearing loss in these settings.FundingBill & Melinda Gates Foundation and WHO.