In this study, chemometric methods as correlation analysis, cluster analysis (CA), principal component analysis (PCA), and factor analysis (FA) have been used to reduce the number of chromatographic parameters (logk/logkw) and various (e.g., 0D, 1D, 2D, 3D) structural descriptors for three different groups of drugs, such as 12 analgesic drugs, 11 cardiovascular drugs and 36 "other" compounds and especially to choose the most important data of them.All chemometric analyses have been carried out, graphically presented and also discussed for each group of drugs. At first, compounds' structural and chromatographic parameters were correlated. The best results of correlation analysis were as follows: correlation coefficients like R = 0.93, R = 0.88, R = 0.91 for cardiac medications, analgesic drugs, and 36 "other" compounds, respectively. Next, part of molecular and HPLC experimental data from each group of drugs were submitted to FA/PCA and CA techniques.Almost all results obtained by FA or PCA, and total data variance, from all analyzed parameters (experimental and calculated) were explained by first two/three factors: 84.28%, 76.38 %, 69.71% for cardiovascular drugs, for analgesic drugs and for 36 "other" compounds, respectively. Compounds clustering by CA method had similar characteristic as those obtained by FA/PCA. In our paper, statistical classification of mentioned drugs performed has been widely characterized and discussed in case of their molecular structure and pharmacological activity.Proposed QSAR strategy of reduced number of parameters could be useful starting point for further statistical analysis as well as support for designing new drugs and predicting their possible activity.
An indirect UV detection method based on CE was developed and validated to determinate 12 metal cations, including alkali, alkaline earth, transition metal, and ammonium. In this paper, a new electrolyte system (pH 4.22) contained 20 mM benzimidazole (as co-ion), 75 mM acetic acid (as a counter-ion) as well as 0.6 mM 18-crown-6 ether was applied. The metal ions were completely separated within 8 min under hydrodynamic mode injection with a running voltage of 20 kV at 25 ± 0.1°C. Additional use of the dynamic double coating method enabled to get an excellent repeatability of migration times and quantitative parameters for all analytes. The repeatability of migration times for analytes were less than 0.9% and peak areas and peak heights ranged from 3.7 to 7.2 and 3.9 to 7.7%, respectively (n = 6). The proposed technique proved to be definitely faster and less expensive in comparison to currently employed methods. In this work, we discuss also the linear range, method detection limits as well as precision and accuracy. The applicability of the elaborated method was authenticated by the quantification of metal ions in commercially available mineral water, tap water, and selected medical injection samples.
The parameters of lipophilicity for three different groups of drugs (twelve analgesics drugs, eleven cardiovascular system drugs, and thirty six compounds characterized by divergent pharmacological activity) were experimentally determined by HPLC methods as well as calculated using various computer programs (HyperChem, ACD/Labs, ChemAxon, Dragon and VCCLab). The relationships between experimental (chromatographic) parameters of lipophilicity (log k and log kw) and the chemical structure of the studied compounds, and their comparison due to their lipophilic and hydrophilic character were presented. Moreover, the experimental and calculated values of parameters of lipophilicity were correlated and compared. Finally, both these groups of parameters of lipophilicity were analyzed using PCA or FA methods for the classification of studied compounds according to their chemical structures and pharmacological activity.
A series of new 6-chloro-3-(2-arylmethylene-1-methylhydrazino)-1,4,2-benzodithiazine 1,1-dioxide derivatives were effectively synthesized from N-methyl-N-(6-chloro-1,1-dioxo-1,4,2-benzodithiazin-3-yl)hydrazines. The intermediate compounds as well as the products, were evaluated for their cytotoxic effects toward three human cancer cell lines. All compounds shown moderate or weak cytotoxic effects against the tested cancer cell lines, but selective cytotoxic effects were observed. Compound 16 exhibited the most potent cytotoxic activity against the HeLa cell line, with an IC50 value of 10 µM, while 14 was the most active against the MCF-7 and HCT-116 cell lines, affording IC50 values of 15 µM and 16 µM, respectively. The structure-activity relationship was evaluated based on QSAR methodology. The QSAR MCF-7 model indicated that natural charge on carbon atom C13 and energy of highest occupied molecular orbital (HOMO) are highly involved in cytotoxic activity against MCF-7 cell line. The cytotoxic activity of compounds against HCT-116 cell line is dependent on natural charge on carbon atom C13 and electrostatic charge on nitrogen atom N10. The obtained QSAR models could provide guidelines for further development of novel anticancer agents.