In investigation of the effects of 14-substitution in the indolomorphinan series of δ-selective opioid ligands, 5,14-bridged indolomorphinans (4) were prepared from the equivalent dihydrothebainone acid-catalyzed rearrangement products of the dihydrothevinols. Though the new ligands generally had low affinity for opioid receptors and no δ-selectivity, 4b had high κ-affinity and substantial selectivity which was also seen in the precursor morphinanone (3b). This indicates that the methylbenzylidene-substituted bridge in these compounds is a dominant κ-opioid receptor binding motif.
A palladium-catalyzed intramolecular coupling process leads to a functionalized macrocycle suitable for a double transannular cyclization. The resulting steroid framework, and its stereo- and regioisomers, are identified by analysis of the NMR-spectroscopic data.
New drugs are needed for treatment of Toxoplasma gondii infections. We tested derivatives of principles found in Isatis indigotica for in vitro efficacy against T. gondii infection. Indirubin-3'-oxime analogs showed modest micromolar activity, while tryptanthrin derivatives displayed 50% inhibitory doses in the low nanomolar range. Tryptanthrins have potential as anti-Toxoplasma infection therapeutics.
The development of structure-activity relationships (SAR) with divergent classes of monoamine transporter ligands and comparison of their effects in animal models of cocaine abuse have provided insight into the complex relationship among structure, binding profiles, and behavioral activity. Many 3alpha-(diphenylmethoxy)tropane (benztropine) analogues are potent dopamine uptake inhibitors but exhibit behavioral profiles that differ from those of cocaine and other compounds in this class. One of the most potent and dopamine transporter (DAT) selective N-substituted benztropine analogues (N-(4-phenyl-n-butyl)-3alpha-(bis[4-fluorophenyl]methoxy)tropane, 1c) is devoid of cocaine-like behaviors in rodent models but is also highly lipophilic (cLogD = 5.01), which compromises its water solubility and may adversely affect its pharmacokinetic properties. To further explore the SAR in this series and ultimately to design dopamine uptake inhibitors with favorable lipophilicities for drug development, a comparative molecular field analysis (CoMFA) was performed on a set of benztropine analogues previously synthesized in our laboratory. The CoMFA field analysis on the statistically significant (r2(cv) = 0.632; r2(ncv) = 0.917) models provided valuable insight into the structural features required for optimal binding to the DAT, which was used to design a series of novel benztropine analogues with heteroatom substitutions at the tropane N-8. These compounds were evaluated for binding at DAT, serotonin (SERT) and norepinephrine (NET) transporters, and muscarinic M1 receptors in rat brain. Inhibition of [3H]DA uptake in synaptosomes was also evaluated. Most of the analogues showed high DAT affinity (12-50 nM), selectivity (10- to 120-fold), potent inhibition of dopamine uptake, and lower lipophilicities as predicted by cLogD values.
A palladium-catalyzed intramolecular coupling process leads to a functionalized macrocycle suitable for a double transannular cyclization. The resulting steroid framework, and its stereo- and regioisomers, are identified by analysis of the NMR-spectroscopic data.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Our previous studies have shown that the selective dopamine D(3) receptor antagonists SB-277011A or NGB 2904 significantly attenuate cocaine self-administration under a progressive-ratio reinforcement schedule and cocaine-, methamphetamine- or nicotine-enhanced brain stimulation reward. However, the poor bioavailability of SB-277011A has limited its potential use in humans. In the present study, we investigated the effects of the novel D(3) receptor antagonist PG01037 on methamphetamine self-administration, methamphetamine-associated cue-induced reinstatement of drug seeking and methamphetamine-enhanced brain stimulation reward. Rats were allowed to intravenously self-administer methamphetamine under fixed-ratio 2 and progressive-ratio reinforcement conditions, and then the effects of PG01037 on methamphetamine self-administration and cue-induced reinstatement were assessed. Additional groups of rats were trained for intracranial electrical brain stimulation reward and the effects of PG01037 and methamphetamine on brain stimulation reward were assessed. Acute intraperitoneal administration of PG01037 (3, 10, 30 mg/kg) failed to alter methamphetamine or sucrose self-administration under fixed-ratio 2 reinforcement, but significantly lowered the break-point levels for methamphetamine or sucrose self-administration under progressive-ratio reinforcement. In addition, PG01037 significantly inhibited methamphetamine-associated cue-triggered reinstatement of drug-seeking behavior and methamphetamine-enhanced brain stimulation reward. These data suggest that the novel D(3) antagonist PG01037 significantly attenuates the rewarding effects as assessed by progressive-ratio self-administration and brain stimulation reward, and inhibits methamphetamine-associated cue-induced reinstatement of drug-seeking behavior These findings support the potential use of PG01037 or other selective D(3) antagonists in the treatment of methamphetamine addiction.