ABSTRACT Neurofibromatosis-2 is an inherited disorder characterized by the development of benign schwannomas and other Schwann-cell-derived tumors associated with the central nervous system. The Neurofibromatosis-2 tumor suppressor gene encodes Merlin, a member of the Protein 4.1 superfamily most closely related to Ezrin, Radixin and Moesin. This discovery suggested a novel function for Protein 4.1 family members in the regulation of cell proliferation; proteins in this family were previously thought to function primarily to link transmembrane proteins to underlying cortical actin. To understand the basic cellular functions of Merlin, we are investigating a Drosophila Neurofibromatosis-2 homologue, Merlin. Loss of Merlin function in Drosophila results in hyperplasia of the affected tissue without significant disruptions in differentiation. Similar phenotypes have been observed for mutations in another Protein 4.1 superfamily member in Drosophila, expanded. Because of the phenotypic and structural similarities between Merlin and expanded, we asked whether Merlin and Expanded function together to regulate cell proliferation. In this study, we demonstrate that recessive loss of function of either Merlin or expanded can dominantly enhance the phenotypes associated with mutations in the other. Consistent with this genetic interaction, we determined that Merlin and Expanded colocalize in Drosophila tissues and cells, and physically interact through a conserved N-terminal region of Expanded, characteristic of the Protein 4.1 family, and the C-terminal domain of Merlin. Loss of function of both Merlin and expanded in clones revealed that these proteins function to regulate differentiation in addition to proliferation in Drosophila. Further genetic analyses suggest a role for Merlin and Expanded specifically in Decapentaplegic-mediated differentiation events. These results indicate that Merlin and Expanded function together to regulate proliferation and differentiation, and have implications for understanding the functions of other Protein 4.1 superfamily members.
The rearrangement of cytoskeletal elements is essential for many cellular processes. The tumor suppressor Adenomatous polyposis coli (APC) affects the function of microtubules and actin, but the mechanisms by which it does so are not well understood. Here we report that Drosophila syncytial embryos null for Apc2 display defects in the formation and extension of pseudocleavage furrows, which are cortical actin structures important for mitotic fidelity in early embryos. Furthermore, we show that the formin Diaphanous (DIA) functions with APC2 in this process. Colocalization of APC2 and DIA peaks during furrow extension, and localization of APC2 to furrows is DIA-dependent. Furthermore, APC2 binds DIA directly through a region of APC2 not previously shown to interact with DIA-related formins. Consistent with these results, reduction of dia enhances actin defects in Apc2 mutant embryos. Thus, an APC2-DIA complex appears crucial for actin furrow extension in the syncytial embryo. Interestingly, EB1, a microtubule +TIP and reported partner of vertebrate APC and DIA1, may not function with APC2 and DIA in furrow extension. Finally, whereas DIA-related formins are activated by Rho family GTPases, our data suggest that the APC2-DIA complex might be independent of RHOGEF2 and RHO1. Furthermore,although microtubules play a role in furrow extension, our analysis suggests that APC2 and DIA function in a novel complex that affects actin directly,rather than through an effect on microtubules.
Abstract Mechanical forces are integral to a wide range of cellular processes including migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution and with minimal tissue perturbation. Here, we fabricated, calibrated, and tested a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to cells and tissues to measure the magnitude, direction, and dynamics of strain from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultrathin square lattice FN mesh with spatial resolution tailored by adjusting the width and spacing of the lattice fibers from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrated strain tracking in 2D and 3D following mechanical deformation of known materials and was validated with finite element modeling. Imaging and 3D analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles demonstrated the ability to dynamically track microscopic tensile and compressive strains in various biological applications with minimal tissue perturbation. This fabrication and analysis platform serves as a novel tool for studying cells, tissues, and more complex systems where forces guide structure and function.
Summary The gut microbiota impacts diverse aspects of host biology including metabolism, immunity, and behavior, but the scope of those effects and their underlying molecular mechanisms are poorly understood. To address these gaps, we used Two-dimensional Difference Gel Electrophoresis (2D-DIGE) to identify proteomic differences in male and female Drosophila heads raised with a conventional microbiota and those raised in a sterile environment (axenic). We discovered 22 microbiota-dependent protein differences, and identified a specific elevation in Alcohol Dehydrogenase (ADH) in axenic male flies. Because ADH is a key enzyme in alcohol metabolism, we asked whether physiological and behavioral responses to alcohol were altered in axenic males. Here we show that alcohol induced hyperactivity, the first response to alcohol exposure, is significantly increased in axenic males, requires ADH activity, and is modified by genetic background. While ADH activity is required, we did not detect significant microbe-dependent differences in systemic ADH activity or ethanol level. Like other animals, Drosophila exhibit a preference for ethanol consumption, and here we show significant microbiota-dependent differences in ethanol preference specifically in males. This work demonstrates that male Drosophila’s association with their microbiota affects their physiological and behavioral responses to ethanol.
Abstract Merlin, the Drosophila homologue of the human tumor suppressor gene Neurofibromatosis 2 (NF2), is required for the regulation of cell proliferation and differentiation. To better understand the cellular functions of the NF2 gene product, Merlin, recent work has concentrated on identifying proteins with which it interacts either physically or functionally. In this article, we describe genetic screens designed to isolate second-site modifiers of Merlin phenotypes from which we have identified five multiallelic complementation groups that modify both loss-of-function and dominant-negative Merlin phenotypes. Three of these groups, Group IIa/scribbler (also known as brakeless), Group IIc/blistered, and Group IId/net, are known genes, while two appear to be novel. In addition, two genes, Group IIa/scribbler and Group IIc/blistered, alter Merlin subcellular localization in epithelial and neuronal tissues, suggesting that they regulate Merlin trafficking or function. Furthermore, we show that mutations in scribbler and blistered display second-site noncomplementation with one another. These results suggest that Merlin, blistered, and scribbler function together in a common pathway to regulate Drosophila wing epithelial development.
Many epithelial cells are polarized along the plane of the epithelium, a property termed planar cell polarity. The Drosophila wing and eye imaginal discs are the premier models of this process. Many proteins required for polarity establishment and its translation into cytoskeletal polarity were identified from studies of those tissues. More recently, several vertebrate tissues have been shown to exhibit planar cell polarity. Striking similarities and differences have been observed when different tissues exhibiting planar cell polarity are compared. Here we describe a new tissue exhibiting planar cell polarity - the denticles, hair-like projections of the Drosophila embryonic epidermis. We describe in real time the changes in the actin cytoskeleton that underlie denticle development, and compare this with the localization of microtubules, revealing new aspects of cytoskeletal dynamics that may have more general applicability. We present an initial characterization of the localization of several actin regulators during denticle development. We find that several core planar cell polarity proteins are asymmetrically localized during the process. Finally, we define roles for the canonical Wingless and Hedgehog pathways and for core planar cell polarity proteins in denticle polarity.