Drosophila APC2 and Armadillo participate in tethering mitotic spindles to cortical actin
156
Citation
30
Reference
10
Related Paper
Citation Trend
Keywords:
IQGAP1
The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro-tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore-microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.
Spindle pole body
Astral microtubules
Spindle checkpoint
Cite
Citations (35)
Duo1p and Dam1p were previously identified as spindle proteins in the budding yeast, Saccharomyces cerevisiae. Here, analyses of a diverse collection of duo1 and dam1 alleles were used to develop a deeper understanding of the functions and interactions of Duo1p and Dam1p. Based on the similarity of mutant phenotypes, genetic interactions between duo1 and dam1 alleles, interdependent localization to the mitotic spindle, and Duo1p/Dam1p coimmunoprecipitation from yeast protein extracts, these analyses indicated that Duo1p and Dam1p perform a shared function in vivo as components of a protein complex. Duo1p and Dam1p are not required to assemble bipolar spindles, but they are required to maintain metaphase and anaphase spindle integrity. Immunofluorescence and electron microscopy of duo1 and dam1 mutant spindles revealed a diverse variety of spindle defects. Our results also indicate a second, previously unidentified, role for the Duo1p/Dam1p complex. duo1 and dam1 mutants show high rates of chromosome missegregation, premature anaphase events while arrested in metaphase, and genetic interactions with a subset of kinetochore components consistent with a role in kinetochore function. In addition, Duo1p and Dam1p localize to kinetochores in chromosome spreads, suggesting that this complex may serve as a link between the kinetochore and the mitotic spindle.
Spindle pole body
Spindle checkpoint
Mitotic exit
Cite
Citations (147)
Spindle pole body
Astral microtubules
Cite
Citations (39)
Spindle checkpoint
Cite
Citations (9)
The mitotic spindle consists of a complex network of proteins that segregates chromosomes in eukaryotes. To strengthen our understanding of the molecular composition, organization, and regulation of the mitotic spindle, we performed a system-wide two-hybrid screen on 94 proteins implicated in spindle function in Saccharomyces cerevisiae. We report 604 predominantly novel interactions that were detected in multiple screens, involving 303 distinct prey proteins. We uncovered a pattern of extensive interactions between spindle proteins reflecting the intricate organization of the spindle. Furthermore, we observed novel connections between kinetochore complexes and chromatin-modifying proteins and used phosphorylation site mutants of NDC80/TID3 to gain insights into possible phospho-regulation mechanisms. We also present analyses of She1p, a novel spindle protein that interacts with the Dam1 kinetochore/spindle complex. The wealth of protein interactions presented here highlights the extent to which mitotic spindle protein functions and regulation are integrated with each other and with other cellular activities.
Spindle pole body
Mitotic exit
Spindle checkpoint
Multipolar spindles
Aurora B kinase
Cite
Citations (94)
Spindle checkpoint
Spindle pole body
Cite
Citations (89)
Gohta Goshima, Shigeaki Saitoh, and Mitsuhiro Yanagida Core Research for Evolutional Science and Technology (CREST) Research Project, Department of Biophysics, Graduate School of Science, and Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 Japan
Spindle checkpoint
Spindle pole body
Cite
Citations (206)
Abstract For daughter cells to receive equal copies of the genome during mitosis, the replicated chromosomes must attach to and move bi-directionally on the mitotic spindle. A chromosome becomes attached to the spindle via a pair specialized structures, known as kinetochores, that are positioned on opposite sides of its primary constriction (one on each of the two chromatids). In addition to being the spindle attachment site, kinetochores are also involved in producing and/or transmitting the forces for chromosome motion. In vertebrates the kinetochore closest to a spindle pole at the time of nuclear envelope breakdown usually is the first to attach to the spindle. As a result of this attachment the now “monooriented” chromosome moves toward the closest pole where its only attached kinetochore initiates oscillatory motions toward and away from that pole until the unattached sister kinetochore acquires microtubules (Mts) from the opposite spindle pole.
Cite
Citations (0)
The spindle-assembly checkpoint involves signaling at kinetochores, which leads to the arrest of mitotic progression in the absence of microtubule attachment or spindle tension. Here, we detail procedures for the analysis of the spindle-assembly checkpoint in adherent mammalian cells. These techniques focus on pharmacological approaches and immunofluorescence microscopy to verify the state of spindle assembly, kinetochore attachment of microtubules and spindle tension, chromosome positioning, and kinetochore signaling by the Mad2 or Bub1 checkpoint proteins. We also describe a bi-parameter flow cytometric assay, using either MPM-2 or anti-phospho-(Ser10)-histone H3 antibodies, for quantitating mitotic cells.
Spindle checkpoint
BUB1
Mad2
Nocodazole
Cite
Citations (20)
Mitotic spindle is a self-assembling macromolecular machine responsible for the faithful segregation of chromosomes during cell division. Assembly of the spindle is believed to be governed by the 'Search & Capture' (S&C) principle in which dynamic microtubules explore space in search of kinetochores while the latter capture microtubules and thus connect chromosomes to the spindle. Due to the stochastic nature of the encounters between kinetochores and microtubules, the time required for incorporating all chromosomes into the spindle is profoundly affected by geometric constraints, such as the size and shape of kinetochores as well as their distribution in space at the onset of spindle assembly. In recent years, several molecular mechanisms that control these parameters have been discovered. It is now clear that stochastic S&C takes place in structured space, where components are optimally distributed and oriented to minimize steric hindrances. Nucleation of numerous non-centrosomal microtubules near kinetochores accelerates capture, while changes in the kinetochore architecture at various stages of spindle assembly promote proper connection of sister kinetochores to the opposite spindle poles. Here we discuss how the concerted action of multiple facilitating mechanisms ensure that the spindle assembles rapidly yet with a minimal number of errors.
Spindle checkpoint
Astral microtubules
Spindle pole body
Cite
Citations (13)