In recent years, studies have focused on the combined ecological risks posed by microplastics and other organic pollutants. Although both microplastics and progestin residues are frequently detected in the aquatic environments, their ecological implications remain unknown. Adult zebrafish were exposed to polystyrene microplastics (PS, 200 nm, 200 μg/L), norethindrone (NET, 69.6 ng/L), and their mixture (200 μg/L PS + 63.1 ng/L NET) for 30 days. The results demonstrated that exposure to PS and NET resulted in gill damage. Notably, the PS and PS+NET exhibited a significant decrease in glutathione (GSH) and oxidized glutathione (GSSG) content, as well as reduced antioxidase activity in the gills. The oxidative stress in PS+NET primarily originated from PS. The PS, NET, or their mixture resulted in a decrease in testosterone (T) and estradiol (E2) levels in female. Furthermore, compared to NET, the PS+NET showed a significant reduction in E2 levels, thereby augmenting the inhibitory effect on reproductive ability mediated by NET. However, males showed an increase in 11-ketodihydrotestosterone (11-KT) content, accompanied by a significant decrease in spermatogonia (Sg) and increase in spermatocytes (Sc). Consequently, it can be inferred that PS enhances the androgenic effect of NET. In female fish brain, NET alone resulted in transcriptional down-regulation of partial hormone receptors; however, co-administration of PS effectively mitigated the interference effects. Furthermore, transcriptional downregulation of 17-alpha-hydroxylase (cyp17), hydroxysteroid 3-beta dehydrogenase (hsd3b), estrogen receptor 1 (esr1), and estrogen receptor 2a (esr2b) genes in the ovary was found to be associated with the androgenic activity induced by NET. Moreover, in comparison to PS or NET alone, PS+NET resulted in a notable decrease in Cetobacterium abundance and an increase in Aeromonas population, suggesting that the co-exposure of PS+NET may exacerbate intestinal burden. The findings highlight the importance of studying the combined toxicity of PS and NET.
The interaction between 4-nitroaniline and bovine serum albumin(BSA) was investigated by fluorescence under the imitated physiological condition of animal body.4-Nitroaniline can strongly quench intrinsic fluorescence of BSA.In the mechanism discussion,it is proved that static quenching occurs predominately.According to Stern-Volmer equation and double-log regression equation,we found that BSA reacted with 4-nitroanline and formed a certain new compound.The binding constants K(298 K:2.18×104 L/mol;310 K:1.95×104 L/mol) and the number of binding site n(298K∶1.09;310 K∶1.12)were obtained using double-log regression equation.Negative enthalpy(ΔH) and positive entropy(ΔS) values indicated that both hydrogen bond and hydrophobic forces played a major role in the binding of 4-nitroaniline and BSA.The results of synchronous fluorescence show that the conformation of BSA has changed in the presence of 4-nitroaniline and the hydrophobicity around tryptophanyl and tyrosyl residues increased.
Abstract Municipal wastewaters have been known to contain various estrogens and androgens. Little is known about the joint action of these chemicals from wastewaters on fishes in the aquatic environment. The objectives of this study were to investigate the estrogenic and/or androgenic effects in wild mosquitofish ( Gambusia affinis ) of two effluent-impacted rivers in South China by determining morphological changes and hepatic mRNA expression levels of relevant genes such as vitellogenin (Vtg), estrogen receptor (ERα) and androgen receptors (ARα and ARβ) and to assess the linkages of those morphological changes and hepatic mRNA expression levels to the chemical concentrations measured by in vitro bioassays and chemical analysis. The results showed a significant induction of Vtg and ERα mRNA in the livers of the males and a gonopodium-like anal fin in the females collected at the majority of sites. Redundancy analysis and Pearson correlation analysis showed that the chemical concentrations obtained by in vitro bioassays and chemical analysis had significant correlations with some of the endpoints for the estrogenic and/or androgenic effects in mosquitofish. The findings from this study indicate that the estrogens and androgens present in the two rivers could cause the observed estrogenic and androgenic effects in mosquitofish.
Norethindrone (NET) is a widely used synthetic progestin, which appears in water environments and threatens aquatic organisms. In this study, marine medaka (Oryzias melastigma) larvae were exposed to 7.6 and 80.1 ng/L NET for 190 days. The effects of NET on growth, sex differentiation, gonad histology and transcriptional expression profiles of hypothalamic-pituitary-gonadal (HPG) axis-related genes were determined. The results showed that exposure to 80.1 ng/L NET caused an all-male marine medaka population and significantly decreased the growth of males. Exposure to 7.6 ng/L NET increased the ratio of males/females in the marine medaka population, decreased the growth of males and delayed the ovary maturation in females. However, the sperm maturation was accelerated by 7.6 or 80.1 ng/L NET. In females, the transcription levels of cytochrome P450 aromatase (cyp19a1a) and progesterone receptor (pgr) in ovaries, glucocorticoid receptor (gr) and vitellogenin (vtg) in livers were suppressed after exposure to 7.6 ng/L NET, which may cause delayed ovary maturation. In males, NET significantly decreased the transcription levels of follicle stimulating hormone β (fshβ) and Luteinizing hormone β (lhβ)in the brain, Estrogen receptor β (erβ),gr and pgr in the liver, and vitellogenin receptor (vtgr) in the testes, while NET of 80.1 ng/L led to a significant up-regulation of steroidogenic acute regulatory protein (star) in the testes of males. These results showed that NET could influence growth, sex differentiation and gonadal maturation and significantly alter the transcriptional expression levels of HPG axis-related genes.
A new chromogenic reagent, 5-(5-carboxy-1,2,4-triazolylazo)Salicylic Acid was synthesized and used as a highly sensitive reagent for the spectrophotometric determination of copper. Results showed that in weakly alkaline medium, the reagent reacts with copper to form an orange-red complex which had an absorption maximum at 540nm. The apparent molar absorptivity was 1.03×10 5 L·mol -1 ·cm -1 in the presence of oil-red of Tuerqi. Beer's law was obeyed over the concentration range of 0~400 μg/L. The interference of various ions had been studied and the method had been used for the determination of micro amounts of copper in waste water.