Earthworms can expedite di-(2-ethylhexyl) phthalate (DEHP) degradation in soils, but limited information is available on the key DEHP-degradation pathways and related genes during the vermicomposting process. In this study, DEHP degradation, degradation-related genes and bacterial communities were investigated by metagenomic analysis. DEHP degradation efficiency was significantly and 65.69% higher in vermicomposting treatment than natural soils. Earthworm supplement remarkably increased the contents of humic acid, humus and fulvic acid in soils. Both humic acid and earthworms gut positively stimulated soil microbes potentially responsible for DEHP degradation. Betaprotebacteria, Acidobacteria, Variovorax, Hydrogenophaga, Limnobacter, Ramlibacter, Pseudomonas, Acinetobacter, Paracoccus and Achromobacter significantly contributed to DEHP degradation pathways. From functional gene analysis, there were remarkable difference in dominant DEHP degradation pathways between soils (catechol pathway), earthworm cast (protocatechuate pathway), and earthworm gut (protocatechuate and catechol pathways). Our findings proposed two possible mechanisms of earthworms in accelerating DEHP degradation, stimulating the activities of indigenous degraders to augment the catechol pathway in soils and providing an extra protocatechuate pathway in earthworm gut. This study, for the first time, offers new insights into the impacts of vermicomposting on DEHP degradation genes and pathways, providing valuable scientific evidence for improving DEHP bioremediation in contaminated agricultural soils.
Swine farm wastewaters (SFWs) are generally discharged either directly into nearby rivers or into fish ponds as a source of fertilizer/food for aquaculture in China. SFWs contain various contaminants including steroid hormones. However, there is an extreme paucity of data on their effects in fish populations. Here we investigated the endocrine disrupting effects of SFWs in G. affinis from 2 rivers (7 sites) and 2 fish ponds (2 sites) receiving SFWs and a reference site in Guangdong Province, China. In this study, a total number of 3078 adult western mosquitofish (Gambusia affinis) were collected and the sex ratio was determined. In addition, secondary sexual characteristics were examined and the transcriptional levels of target genes were analyzed. The results showed the mosquitofish populations had a significant increase in male-to-female ratio from 7 sites (including 2 fish ponds) among the 9 sampling sites. The hemal spines of females were masculinized at most sites while the hemal spines of males were feminized at approximately half of the sites (including 2 fish ponds). Significant reduction in vitellogenin (Vtg) mRNA expression was observed in females from 2 sites (including RS7) while elevated Vtg mRNA expression was noticed in males from 2 sites along the rivers (including RS7). Redundancy analysis showed that androgens in the water samples were closely related with male-to-female ratio in the mosquitofish populations and the masculinized hemal spines of females. The findings from this study demonstrated that discharge of SFWs could result in occurrence of both masculinized females and feminized males in mosquitofish population.
Nowadays, microplastics (MPs) exist widely in the marine. The surface has strong adsorption capacity for antibiotics in natural environments, and the cytotoxicity of complex are poorly understood. In the study, 500 nm polystyrene (PS-MPs) and 60 nm nanoplastics (PS-NPs) were synthesized. The adsorption of PS to tetracycline (TC) was studied and their toxicity to gastric cancer cells (AGS) was researched. The adsorption experimental results show that PS absorbing capacity increased with increasing TC concentrations. The defense mechanism results show that 60 nm PS-NPs, 500 nm PS-MPs and their complex induce different damage to AGS cells. Furthermore, 600 mg/L PS-NPs and PS-MPs decline cell viability, induce oxidation stress and cause apoptosis. There is more serious damage of 60 nm PS-NPs than 500 nm PS-MPs in cell viability and intracellular reactive oxygen species (ROS). DNA are also damaged by 60 nm PS-NPs and PS-TC NPs, 500 nm PS-MPs and PS-TC MPs, and 60 nm PS-NPs damage DNA more serious than 500 nm PS-MPs. Moreover, 60 nm PS-NPs and PS-TC NPs seem to promote bcl-2 associated X protein (Bax) overexpression. All treatments provided us with evidence on how PS-NPs, PS-MPs and their compounds damaged AGS cells.
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils and promoted the transformation of exchangeable and bound tetracycline to water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matters and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings uncovered the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Natural and synthetic progestins may pose a threat to wild fish populations living in receiving waters. In this study, the effects of norethindrone (NET) on the sex differentiation of zebrafish (Dario renio) and the mechanisms underlying these effects were investigated. Juvenile zebrafish (20 days post fertilization, pdf) were exposed to environmentally relevant concentrations (5, 50, 500, and 1000 ng L−1) for 45 d. Sex ratio of the NET-exposed populations, the histology of the gonads and the transcriptional profile of the regulatory genes involved in sex differentiation and steroidogenesis were examined. The results showed that a significantly higher ratio of male/female was induced in the zebrafish populations exposed to NET at concentrations higher than 32.3 ng L−1. Exposure to NET caused acceleration of sexual mature in males and a delay in ovary maturation in female zebrafish. Among the genes regulating sexual differentiation, transcripts of Dmrt1 showed a dose-dependent increase while transcripts of Figa and Fox12 showed a dose-dependent decrease in response to exposure to NET. For genes regulating the steroidogenesis, the expressions of Cyp11a1, Cyp17, Cyp19a1a, and Cyp11b were significantly down-regulated by exposure to NET, while Hsd17b3 expression was significantly up-regulated by exposure to NET at 421.3 and 892.9 ng L−1. For the receptor genes in the gonads, the transcriptional expression of Pgr, Ar, and Mr was significantly up-regulated at 421.3 and 892.9 ng L−1 of NET. For genes involved in the hypothalamic–pituitary axis, the transcriptional expression of Gnrh3 and Pomc was significantly up-regulated by exposure to NET with the exception for Gnrh3 at 4.2 ng L−1. The results demonstrated that exposure to NET at the juvenile stage could affect gonad differentiation and sex ratio, which might be accounted for by the alterations of the transcriptional expressions of genes along the hypothalamic–pituitary–gonadal (HPG) and hypothalamic–pituitary–adrenal (HPA) axes.