Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.
Zhong-Jian Liu, Lai-Qiang Huang, Yi-Bo Luo, Hong-Hwa Chen and Yves Van de Peer report the first genome sequence of a crassulacean acid metabolism (CAM) plant, the orchid Phalaenopsis equestris. They identify genes encoding CAM pathway enzymes and find that gene duplication was likely a key process in the evolution of CAM photosynthesis. Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers.
Containing the largest number of species, the orchid family provides not only materials for studying plant evolution and environmental adaptation, but economically and culturally important ornamental plants for human society. Previously, we collected genome and transcriptome information of Dendrobium catenatum, Phalaenopsis equestris, and Apostasia shenzhenica which belong to two different subfamilies of Orchidaceae, and developed user-friendly tools to explore the orchid genetic sequences in the OrchidBase 4.0. The OrchidBase 4.0 offers the opportunity for plant science community to compare orchid genomes and transcriptomes and retrieve orchid sequences for further study.In the year 2022, two whole-genome sequences of Orchidoideae species, Platanthera zijinensis and Platanthera guangdongensis, were de novo sequenced, assembled and analyzed. In addition, systemic transcriptomes from these two species were also established. Therefore, we included these datasets to develop the new version of OrchidBase 5.0. In addition, three new functions including synteny, gene order, and miRNA information were also developed for orchid genome comparisons and miRNA characterization.OrchidBase 5.0 extended the genetic information to three orchid subfamilies (including five orchid species) and provided new tools for orchid researchers to analyze orchid genomes and transcriptomes. The online resources can be accessed at https://cosbi.ee.ncku.edu.tw/orchidbase5/.
Abstract Background Transposable elements (TEs) are fragments of DNA that can insert into new chromosomal locations. They represent a great proportion of eukaryotic genomes. The identification and characterization of TEs facilitates understanding the transpositional activity of TEs with their effects on the orchid genome structure. Results We combined the draft whole-genome sequences of Phalaenopsis equestris with BAC end sequences, Roche 454, and Illumina/Solexa, and identified long terminal repeat (LTR) retrotransposons in these genome sequences by using LTRfinder and classified by using Gepard software. Among the 10 families Gypsy -like retrotransposons, three families Gypsy1 , Gypsy2 , and Gypsy3 , contained the most copies among these predicted elements. In addition, six high-copy retrotransposons were identified according to their reads in the sequenced raw data. The 12-kb Orchid-rt1 contains 18,000 copies representing 220 Mbp of the P. equestris genome. Southern blot and slot blot assays showed that these four retrotransposons Gypsy1 , Gypsy2 , Gypsy3 , and Orchid-rt1 contained high copies in the large-genome-size/large-chromosome species P. violacea and P. bellina . Both Orchid-rt1 and Gypsy1 displayed various ratios of copy number for the LTR sequences versus coding sequences among four Phalaenopsis species, including P. violacea and P. bellina and small-genome-size/small-chromosome P. equestris and P. ahprodite subsp. formosana , which suggests that Orchid-rt1 and Gypsy1 have been through various mutations and homologous recombination events. FISH results showed amplification of Orchid-rt1 in the euchromatin regions among the four Phalaenopsis species. The expression levels of Peq018599 encoding copper transporter 1 is highly upregulated with the insertion of Orchid-rt1 , while it is down regulated for Peq009948 and Peq014239 encoding for a 26S proteasome non-ATP regulatory subunit 4 homolog and auxin-responsive factor AUX/IAA-related. In addition, insertion of Orchid-rt1 in these three genes are all in their intron regions. Conclusion Orchid-rt1 and Gypsy1–3 have amplified within Phalaenopsis orchids concomitant with the expanded genome sizes, and Orchid-rt1 and Gypsy1 may have gone through various mutations and homologous recombination events. Insertion of Orchid-rt1 is in the introns and affects gene expression levels.
Dendrobium officinale (Orchidaceae) is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.
In the original published version of this article, some of the language was misleading and allowed for misinterpretation of the article. In order to fix this issue, the following revisions have been made: In the Abstract, the sentence "The horizontally-transferred Phytophthora genes are abundant transposons that "transmit" exogenous gene to Phytophthora species thus bring about the gene recombination possibility" has been revised to "The horizontally-transferred Phytophthora genes are from abundant transposon activities that "transmit" exogenous genes to Phytophthora species and thus bring about the gene recombination possibility." In 2.3.5 Horizontal gene transfer, the paragraph "Most pervasive HGT genes are transposons, which is able to mobile and amplify in the host genome, which make them more prone to horizontal transfer. And horizontal transfer is an important way which wold allow the element to evade a seemingly inevitable vertical extinction in its original host lineage resulting from genetic drift, natural selection or mutational inactivation. It was result that transposition "transmitting" foreign genes to Phytophthora species from HGT" has been revised to "It is inferred that most transposons in the genome may be related to horizontal gene transfer, which is able to mobile and amplify in the host genome. And horizontal transfer is an important way which would allow the element to evade a seemingly inevitable vertical extinction in its original host lineage resulting from genetic drift, natural selection or mutational inactivation. It is speculated that transposition may serve as vectors to connect exogenous genes and Phytophthora species, which could be compared to "transmit" to Phytophthora from HGT." In 3. Conclusions, "Horizontally transferred genes in P. fragariae and P. rubi from plants, fungi, bacteria, molluscs, and insects are often transposons that impact genes involved in plant defence resistance mechanisms. Some" has been revised to "It may be postulated that HGTs in P. fragariae and P. rubi from plants, fungi, bacteria, molluscs, and insects might impact genes those are involved in plant defense mechanisms." The authors apologize for the errors. Both the HTML and PDF versions of the article have been updated to correct the errors. Comparative analysis of Phytophthora genomes reveals oomycete pathogenesis in cropsGao et al.HeliyonFebruary 23, 2021In BriefPhytophthora; Genome; Phylogenetic; Pathogenicity; Horizontally gene transfer. Full-Text PDF Open Access
Abstract Oxalidaceae is one of the most important plant families in horticulture, and its key commercially relevant genus, Averrhoa , has diverse growth habits and fruit types. Here, we describe the assembly of a high-quality chromosome-scale genome sequence for Averrhoa carambola (star fruit). Ks distribution analysis showed that A. carambola underwent a whole-genome triplication event, i.e., the gamma event shared by most eudicots. Comparisons between A. carambola and other angiosperms also permitted the generation of Oxalidaceae gene annotations. We identified unique gene families and analyzed gene family expansion and contraction. This analysis revealed significant changes in MADS-box gene family content, which might be related to the cauliflory of A. carambola . In addition, we identified and analyzed a total of 204 nucleotide-binding site, leucine-rich repeat receptor (NLR) genes and 58 WRKY genes in the genome, which may be related to the defense response. Our results provide insights into the origin, evolution and diversification of star fruit.