Opioid use disorder (OUD) impacts millions of people worldwide. Prior studies investigating its underpinning neural mechanisms have not often considered how brain signals evolve over time, so it remains unclear whether brain dynamics are altered in OUD and have subsequent behavioral implications. To characterize brain dynamic alterations and their association with cognitive control in individuals with OUD. This case-control study collected functional magnetic resonance imaging (fMRI) data from individuals with OUD and healthy control (HC) participants. The study was performed at an academic research center and an outpatient clinic from August 2019 to May 2024. Individuals with OUD were all recently stabilized on medications for OUD (<24 weeks). Recurring brain states supporting different cognitive processes were first identified in an independent sample with 390 participants. A multivariate computational framework extended these brain states to the current dataset to assess their moment-to-moment engagement within each individual. Resting-state and naturalistic fMRI investigated whether brain dynamic alterations were consistently observed in OUD. Using a drug cue paradigm in participants with OUD, the association between cognitive control and brain dynamics during exposure to opioid-related information was studied. Variations in continuous brain state engagement (ie, state engagement variability [SEV]) were extracted during resting-state, naturalistic, and drug-cue paradigms. Stroop assessed cognitive control. Overall, 99 HC participants (54 [54.5%] female; mean [SD] age, 31.71 [12.16] years) and 76 individuals with OUD (31 [40.8%] female; mean [SD] age, 39.37 [10.47] years) were included. Compared with HC participants, individuals with OUD demonstrated consistent SEV alterations during resting-state (99 HC participants; 71 individuals with OUD; F4,161 = 6.83; P < .001) and naturalistic (96 HC participants; 76 individuals with OUD; F4,163 = 9.93; P < .001) fMRI. Decreased cognitive control was associated with lower SEV during the rest period of a drug cue paradigm among 70 participants with OUD. For example, lower incongruent accuracy scores were associated with decreased transition SEV (ρ58 = 0.34; P = .008). In this case-control study of brain dynamics in OUD, individuals with OUD experienced greater difficulty in effectively engaging various brain states to meet changing demands. Decreased cognitive control during the rest period of a drug cue paradigm suggests that these individuals had an impaired ability to disengage from opioid-related information. The current study introduces novel information that may serve as groundwork to strengthen cognitive control and reduce opioid-related preoccupation in OUD.
Abstract: Background: COVID19 has slowed down businesses, changed consumer behaviour, and shifted regulatory trends, bringing public life to a halt. It has had a substantial influence on mobility, as public transportation ridership has decreased and vehicle sales have decreased. As a result, the goal of this research is to determine whether there has been a shift in mobility preferences. Because discretionary users are more prone to demonstrate shifts, the focus of this report is on them. Methods: Potential respondents were sent a questionnaire with themes related to pre and post COVID travel choices, reduced trip frequency, and perceptions of various transportation modes via WRI's social media page and email. (n= 229) Limitations: Due to travel restrictions, the survey had to be conducted online. The sample is, hence, skewed towards high income, and salaried employees
This work examines the efficacy of functional magnetic resonance imaging (fMRI) for language lateralization using a comprehensive three-task language-mapping approach. Two localization methods and four different metrics for quantifying activation within hemisphere are compared and validated with Wada testing. Sources of discordance between fMRI and Wada lateralization are discussed with respect to specific patient examples.fMRI language mapping was performed in patients with epilepsy (N = 40) using reading sentence comprehension, auditory sentence comprehension, and a verbal fluency task. This was compared with the Wada procedure using both whole-brain and midline exclusion-based analyses. Different laterality scores were examined as a function of statistical threshold to investigate the sensitivity to threshold effects.For the lateralized patients categorized by Wada, fMRI laterality indices (LIs) were concordant with the Wada procedure results in 83.87% patients for the reading task, 83.33% patients for the auditory task, 76.92% patients for the verbal fluency task, and in 91.3% patients for the conjunction analysis. The patients categorized as bilateral via the Wada procedure showed some hemispheric dominance in fMRI, and discrepancies between the Wada test findings and the functional laterality scores arose for a range of reasons.Discordance was dependent upon whether whole-brain or midline exclusion method-based lateralization was calculated, and in the former case the inclusion of the occipital and other midline regions often negatively influenced the lateralization scores. Overall fMRI was in agreement with the Wada test in 91.3% of patients, suggesting its utility for clinical use with the proper consideration given to the confounds discussed in this work.
Functional coactivation between human brain regions is partly explained by white matter connections; however, how the structure-function relationship varies by function remains unclear. Here, we reference large data repositories to compute maps of structure-function correspondence across hundreds of specific functions and brain regions. We use natural language processing to accurately predict structure-function correspondence for specific functions and to identify macroscale gradients across the brain that correlate with structure-function correspondence as well as cortical thickness. Our findings suggest structure-function correspondence unfolds along a sensory-fugal organizational axis, with higher correspondence in primary sensory and motor cortex for perceptual and motor functions, and lower correspondence in association cortex for cognitive functions. Our study bridges neuroscience and natural language to describe how structure-function coupling varies by region and function in the brain, offering insight into the diversity and evolution of neural network properties.
Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety.
Objective
To study neurophysiological factors that might underlie associations between fructose consumption and weight gain.
Design, Setting, and Participants
Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design.
Main Outcome Measures
Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion.
Results
There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (−5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P = .01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P < .05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex (P < .05 significance threshold, FWE whole-brain corrected). In whole-brain voxel-level analyses, there were no significant differences between direct comparisons of fructose vs glucose sessions following correction for multiple comparisons. Fructose vs glucose ingestion resulted in lower peak levels of serum glucose (mean difference, 41.0 mg/dL [95% CI, 27.7-54.5]; P < .001), insulin (mean difference, 49.6 μU/mL [95% CI, 38.2-61.1]; P < .001), and glucagon-like polypeptide 1 (mean difference, 2.1 pmol/L [95% CI, 0.9-3.2]; P = .01).
Conclusion and Relevance
In a series of exploratory analyses, consumption of fructose compared with glucose resulted in a distinct pattern of regional CBF and a smaller increase in systemic glucose, insulin, and glucagon-like polypeptide 1 levels.
Abstract Objectives Opioid use disorder (OUD) impacts millions of people worldwide. The prevalence and debilitating effects of OUD present a pressing need to understand its neural mechanisms to provide more targeted interventions. Prior studies have linked altered functioning in large-scale brain networks with clinical symptoms and outcomes in OUD. However, these investigations often do not consider how brain responses change over time. Time-varying brain network engagement can convey clinically relevant information not captured by static brain measures. Methods We investigated brain dynamic alterations in individuals with OUD by applying a new multivariate computational framework to movie-watching (i.e., naturalistic; N=76) and task-based (N=70) fMRI. We further probed the associations between cognitive control and brain dynamics during a separate drug cue paradigm in individuals with OUD. Results Compared to healthy controls (N=97), individuals with OUD showed decreased variability in the engagement of recurring brain states during movie-watching. We also found that worse cognitive control was linked to decreased variability during the rest period when no opioid-related stimuli were present. Conclusions These findings suggest that individuals with OUD may experience greater difficulty in effectively engaging brain networks in response to evolving internal or external demands. Such inflexibility may contribute to aberrant response inhibition and biased attention toward opioid-related stimuli, two hallmark characteristics of OUD. By incorporating temporal information, the current study introduces novel information about how brain dynamics are altered in individuals with OUD and their behavioral implications.