Abstract. We present a 1D numerical model which calculates the age of ice around Dome C. It accounts either for melting or for a layer of stagnant ice above the bedrock, depending on the value of an inverted mechanical ice thickness. It is constrained by horizons picked from radar observations and dated using the EPICA Dome C (EDC) ice core age profile. We used 3 different radar datasets with the widest reaching airbourne radar system covering an area of 10,000 km2 and zooming in to 5 km transects over Little Dome C (LDC) with a ground based system. We find that stagnant ice exists in many places including above the LDC relief where the new Beyond EPICA drill site (BELDC) is located. The modelled thickness of this layer of stagnant ice roughly corresponds to the thickness of the basal unit observed in one of the radar surveys and observations made with Autonomous phase-sensitive Radio-Echo Sounder (ApRES). At BELDC, the modelled stagnant ice thickness is 182 ± 63 m and the modelled maximum age (that we define as the age at a maximum age density of 20 kyr m−1) is 1.49 ± 0.18 Ma at a depth of 2505 ± 34 m. This is very similar to all sites situated on the LDC relief such as that of the Million Year Ice Core project being conducted by the Australian Antarctic Division (AAD). The model was also applied to radar data in the area 10–20 km north of EDC (North Patch, NP), where we find either a thin layer of stagnant ice (generally < 60 m) or a very low melt rate (< 0.1 mm yr−1). The modelled maximum age at NP is over 2 Ma in most places, with ice at 1.5 Ma having a resolution of 9–12 kyr m−1 , making it an exciting prospect for a future oldest ice drill site.
Ice cores drilled at Vostok Station, Antarctica, and studied over the past 10 years by Russia, France, and the United States (Figure 1) are providing a wealth of information about past climate and environmental changes over more than a full glacial‐interglacial cycle. The ice cores show that East Antarctica was colder and drier during glacial periods than during the Holocene and that large‐scale atmospheric circulation was more vigorous during glacial times. They also support evidence from deep‐sea sediment studies favoring orbital forcing of Pleistocene climate, reveal direct correlations of carbon dioxide and methane concentrations with temperature, and indicate how the accumulation of trace compounds have changed through time.
Abstract. In the context of global warming, growing attention is paid to the evolution of the Greenland ice sheet (GrIS) and its contribution to sea-level rise at the centennial timescale. Atmosphere–GrIS interactions, such as the temperature–elevation and the albedo feedbacks, have the potential to modify the surface energy balance and thus to impact the GrIS surface mass balance (SMB). In turn, changes in the geometrical features of the ice sheet may alter both the climate and the ice dynamics governing the ice sheet evolution. However, changes in ice sheet geometry are generally not explicitly accounted for when simulating atmospheric changes over the Greenland ice sheet in the future. To account for ice sheet–climate interactions, we developed the first two-way synchronously coupled model between a regional atmospheric model (MAR) and a 3-D ice sheet model (GRISLI). Using this novel model, we simulate the ice sheet evolution from 2000 to 2150 under a prolonged representative concentration pathway scenario, RCP8.5. Changes in surface elevation and ice sheet extent simulated by GRISLI have a direct impact on the climate simulated by MAR. They are fed to MAR from 2020 onwards, i.e. when changes in SMB produce significant topography changes in GRISLI. We further assess the importance of the atmosphere–ice sheet feedbacks through the comparison of the two-way coupled experiment with two other simulations based on simpler coupling strategies: (i) a one-way coupling with no consideration of any change in ice sheet geometry; (ii) an alternative one-way coupling in which the elevation change feedbacks are parameterized in the ice sheet model (from 2020 onwards) without taking into account the changes in ice sheet topography in the atmospheric model. The two-way coupled experiment simulates an important increase in surface melt below 2000 m of elevation, resulting in an important SMB reduction in 2150 and a shift of the equilibrium line towards elevations as high as 2500 m, despite a slight increase in SMB over the central plateau due to enhanced snowfall. In relation with these SMB changes, modifications of ice sheet geometry favour ice flux convergence towards the margins, with an increase in ice velocities in the GrIS interior due to increased surface slopes and a decrease in ice velocities at the margins due to decreasing ice thickness. This convergence counteracts the SMB signal in these areas. In the two-way coupling, the SMB is also influenced by changes in fine-scale atmospheric dynamical processes, such as the increase in katabatic winds from central to marginal regions induced by increased surface slopes. Altogether, the GrIS contribution to sea-level rise, inferred from variations in ice volume above floatation, is equal to 20.4 cm in 2150. The comparison between the coupled and the two uncoupled experiments suggests that the effect of the different feedbacks is amplified over time with the most important feedbacks being the SMB–elevation feedbacks. As a result, the experiment with parameterized SMB–elevation feedback provides a sea-level contribution from GrIS in 2150 only 2.5 % lower than the two-way coupled experiment, while the experiment with no feedback is 9.3 % lower. The change in the ablation area in the two-way coupled experiment is much larger than those provided by the two simplest methods, with an underestimation of 11.7 % (14 %) with parameterized feedbacks (no feedback). In addition, we quantify that computing the GrIS contribution to sea-level rise from SMB changes only over a fixed ice sheet mask leads to an overestimation of ice loss of at least 6 % compared to the use of a time variable ice sheet mask. Finally, our results suggest that ice-loss estimations diverge when using the different coupling strategies, with differences from the two-way method becoming significant at the end of the 21st century. In particular, even if averaged over the whole GrIS the climatic and ice sheet fields are relatively similar; at the local and regional scale there are important differences, highlighting the importance of correctly representing the interactions when interested in basin scale changes.